
On the Effectiveness of Techniques to Detect

Phishing Sites

Christian Ludl, Sean McAllister, Engin Kirda, Christopher Kruegel

Secure Systems Lab, Technical University Vienna
[chris2,sean,ek,chris]@seclab.tuwien.ac.at

Abstract. Phishing is an electronic online identity theft in which the
attackers use a combination of social engineering and web site spoofing
techniques to trick a user into revealing confidential information. This
information is typically used to make an illegal economic profit (e.g., by
online banking transactions, purchase of goods using stolen credentials,
etc.). Although simple, phishing attacks are remarkably effective. As a re-
sult, the numbers of successful phishing attacks have been continuously
increasing and many anti-phishing solutions have been proposed. One
popular and widely-deployed solution is the integration of blacklist-based
anti-phishing techniques into browsers. However, it is currently unclear
how effective such blacklisting approaches are in mitigating phishing at-
tacks in real-life. In this paper, we report our findings on analyzing the
effectiveness of two popular anti-phishing solutions. Over a period of
three weeks, we automatically tested the effectiveness of the blacklists
maintained by Google and Microsoft with 10,000 phishing URLs. Fur-
thermore, by analyzing a large number of phishing pages, we explored
the existence of page properties that can be used to identify phishing
pages.

1 Introduction

Online services simplify our lives. They allow us to access information ubiqui-
tously and are also useful for service providers because they reduce the opera-
tional costs involved in offering a service. For example, online banking over the
web has become indispensable for customers as well as for banks. Unfortunately,
interacting with an online service such as a banking web application often re-
quires a certain degree of technical sophistication that not all Internet users
possess. For the last couple of years, such naive users have been increasingly
targeted by phishing attacks that are launched by miscreants who are aiming
to make an easy profit by means of illegal financial transactions. Phishing is a
form of electronic identity theft in which a combination of social engineering and
web site spoofing techniques are used to trick a user into revealing confidential
information with economic value. In a typical attack, the attacker sends a large
number of spoofed (i.e., fake) e-mails to random Internet users that appear to
be coming from a legitimate business organization such as a bank. The e-mail
urges the recipient (i.e., the potential victim) to update his personal informa-
tion. Often, the e-mail also warns the recipient that the failure to comply with

the request will result in the suspending of his online banking account. Such un-
grounded threats are common in social engineering attacks and are an effective
technique in persuading users.

When the unsuspecting victim follows the phishing link that is provided in
the e-mail, he is directed to a web site that is under the control of the attacker.
The site is prepared in a way such that it looks familiar to the victim. That is, the
phishers typically imitate the visual corporate identity of the target organization
by using similar colors, icons, logos and textual descriptions. In order to “update”
his personal information, the victim is asked to enter his online banking login
credentials (i.e., user name and password) to access the web site. If a victim
enters his valid login credentials into the fraudulent web site, the phisher can
then impersonate the victim. This may allow the attacker to transfer funds
from the victim’s account or cause other damage. Because victims are directly
interacting with a web site that they believe they know and trust, the success
rate of such attacks is very high. Note that although phishing has been receiving
wide media coverage (hence, causing the number of Internet users who have
heard of phishing to increase), such attacks still remain effective as phishers
have been adapting their social engineering attempts accordingly. For example,
many phishing e-mails now ask the victims to validate their personal information
for “security purposes”, supposedly because the targeted organization would like
to protect them against the phishing threat.

According to the Anti-Phishing Working Group [2], the phishing problem
has grown significantly over the last years. For example, the number of unique
phishing web sites has exploded from 7,197 in December 2005 to 28,531 in De-
cember 2006. Also, financial losses stemming from phishing attacks have risen
considerably, to more than $2.8 billion in the last year according to Gartner
Inc. [8].

The phishing problem has become so serious that large IT companies such as
Microsoft, Google, AOL and Opera have recently started announcing browser-
integrated, blacklist-based anti-phishing solutions. However, one important ques-
tion that still remains is how effective such blacklist-based solutions are in dealing
with the phishing problem.

In this paper, we report our findings on analyzing the effectiveness of two
popular blacklist-based anti-phishing solutions. We automatically tested the ef-
fectiveness of the blacklists maintained by Google and Microsoft over a three
week period. During this time, we tested the blacklists with 10,000 phishing
URLs. Furthermore, by analyzing a large number of phishing pages, we experi-
mentally explored the existence of page properties that can be used to identify
phishing pages.
The contributions of this paper are as follows:

– We show that blacklist-based solutions are actually quite effective in protect-
ing users against phishing attempts. In our experiments, Google recognized
almost 90% of the malicious URLs at the time of the initial check.

– By analyzing a large number of phishing pages, we built a classification model
that attempts to use the properties of a page (e.g., number of password

fields, number of external links, etc.) to distinguish between malicious and
legitimate pages. We believe our model can be used to improve existing anti-
phishing approaches (e.g., such as the built-in phishing detection heuristics
used by IE 7).

2 Related Work

A number of anti-phishing solutions have been proposed to date. Some ap-
proaches attempt to solve the phishing problem at the e-mail level. That is, they
try to prevent phishing e-mails from reaching the potential victims by means
of filters and content analysis. Obviously, such techniques are closely related to
anti-spam research. In fact, anti-spam techniques (e.g., such as Bayesian filters)
have proven to be quite effective in also intercepting phishing e-mails. Unfortu-
nately, the effectiveness of anti-spam techniques often depends on many critical
factors such as regular filter training and the availability of anti-spam tools.
Furthermore, filtering, no matter how efficient, is not perfect and some phishing
e-mails may manage to get through the filters and reach potential victims (i.e.,
strengthening the belief that the e-mail is legitimate).

Microsoft and Yahoo have also defined e-mail authentication protocols (i.e.,
Sender ID [16] and DomainKeys [32]) that can be use to verify if a received
e-mail is authentic. The main disadvantage of these solutions, however, is that
they are currently not used by the majority of Internet users.

Several academic, browser-integrated solutions (i.e., client-side techniques)
have been proposed to date to mitigate phishing attacks. Well-known solutions
in literature are SpoofGuard [3, 26] and PwdHash [24, 23]. SpoofGuard looks for
phishing symptoms (e.g., obfuscated URLS) in web pages and raises alerts. Pwd-
Hash, in contrast, creates domain-specific passwords that are rendered useless
if they are submitted to another domain (e.g., a password for www.gmail.com

will be different if submitted to www.attacker.com). Our anti-phishing tool,
AntiPhish [11] takes a different approach and keeps track of where sensitive in-
formation is being submitted. That is, if it detects that confidential information
such as a password is being entered into a form on an untrusted web site, a
warning is generated and the pending operation is canceled.

An interesting solution that has been proposed by Dhamija et al. [5] involves
the use of a so-called dynamic security skin on the user’s browser. The technique
allows a remote server to prove its identity in a way that is easy for humans to
verify, but difficult for phishers to spoof. The disadvantage of this approach is
that it requires effort by the user. That is, the user needs to be aware of the
phishing threat and check for signs that the site he is visiting is spoofed. In fact,
in a later study [6], Dhamija et al. report that more than 20% of the users do
not take visual cues into consideration when surfing and that visual deception
attacks can fool even the most sophisticated users.

Lui et al. [30] analyze and compare legitimate and phishing web pages to
define metrics that can be used to detect a phishing page. A web page is classified
as a phishing page if its visual similarity value is above a pre-defined threshold.

The most popular and widely-deployed techniques, however, are based on the
use of blacklists of phishing domains that the browser refuses to visit. For ex-
ample, Microsoft has recently integrated a blacklist-based anti-phishing solution
into its Internet Explorer (IE) 7 browser. The browser queries lists of blacklisted
and whitelisted domains from Microsoft servers and makes sure that the user
is not accessing any phishing sites. Microsoft’s solution is also known to use
some heuristics to detect phishing symptoms in web pages [27, 15]. Obviously,
to date, the company has not released any detailed public information on how
its anti-phishing techniques function.

Other browser-integrated anti-phishing tools include Google Safe Brows-
ing [25], NetCraft tool bar [18], eBay tool bar [7] and McAfee SiteAdvisor [12].
Similar to the Microsoft IE 7 anti-phishing protection, Google Safe Browsing
uses blacklists of phishing URLs to identify phishing sites. The disadvantage
of the approach is that non blacklisted phishing sites are not recognized. In
contrast, NetCraft assesses the phishing probability of a visited site by trying
to determine how old the registered domain is. The approach partially uses a
database of sites that are maintained by the company. The downside of the ap-
proach, hence, is that new phishing sites that are not in the database might
not be recognized. Similarly, SiteAdvisor is a database-backed solution that is,
however, mainly designed for protection against malware-based attacks (e.g.,
spyware, Trojan horses, etc.). It includes automated crawlers that browse web
sites, perform tests and create threat ratings for each visited site. Unfortunately,
just like other blacklist or database-based solutions, SiteAdvisor cannot recog-
nize new threats that are unknown and not in the database. The eBay solution
is specifically designed for eBay and PayPal and involves the use of a so-called
“Account Guard” that changes color if the user is on a spoofed site.

Verisign has also been providing a commercial anti-phishing service [28]. The
company is crawling millions of web pages to identify “clones” in order to de-
tect phishing web sites. Furthermore, just like other large companies such as
Microsoft, McAfee and Google, blacklists of phishing web sites are maintained.

Note that one problem with crawling and blacklists proposals could be that
the anti-phishing organizations will find themselves in a race against the attack-
ers. This problem is analogous to the problems faced by anti-virus and anti-spam
companies. Obviously, there is always a window of vulnerability during which
users are susceptible to attacks. Furthermore, listing approaches are only as ef-
fective as the quality of the lists that are maintained. Hence, one interesting
research question is how effective such blacklists are in mitigating attacks.

In late 2006, two studies appeared that compared the effectiveness of the
Google and Microsoft blacklists. One study, which was paid for by Microsoft,
unsurprisingly concluded that the Microsoft blacklist is superior [19]. The other
study, initiated by Mozilla, drew the opposite conclusion [17]. Thus, we felt that
a third, independent evaluation would be valuable. In addition, the two studies
mentioned above only consider whether a phishing URL was blacklisted at one
point in time. However, no attempt was made to assess whether phishing URLs

were added at a later time, or whether they were never added at all. Hence, a
key difference of our study is that we take these questions into account.

Also, independently and concurrently from our work, Zhang et al. [33] have
also performed a similar study that investigates the efficiency of anti-phishing
solutions. The authors have created an automated test-bed with which they have
tested the detection rates of mostly blacklist-based anti-phishing solutions. An
important difference of our work is that our tests and experimental data include
10,000 phishing URLs collected over a three week period lasting from December
2006 to January 2007. In comparison, Zhang et al.’s dataset includes 100 phishing
URLs collected over a period of three days in November 2006. Furthermore,
in our work, besides investigating the efficiency of popular blacklists, we also
experimentally explored the existence of page properties that can be used to
identify phishing pages.

3 Scope of Study

The goal of this paper is to analyze the effectiveness of anti-phishing solutions.
More precisely, we are interested in assessing techniques that are capable of
classifying individual web pages. To qualify for our study, a technique must be
capable of determining whether a page is legitimate or a phishing page, given
only the URL and the page’s source code. We did not consider mechanisms that
aim to prevent users from visiting a phishing site (e.g., by recognizing phish-
ing mails). Also, we did not evaluate solutions that attempt to protect sensitive
user information from being leaked to the phishers (e.g., by replacing passwords
with site-specific tokens, or by using novel authentication mechanisms). Cur-
rently, there are two main approaches to classify visited web pages without any
additional information. The first one is based on URL blacklists. The second
approach analyzes properties of the page and (sometimes) the URL to identify
indications for phishing pages.

Blacklists: Blacklists hold URLs (or parts thereof) that refer to sites that are
considered malicious. Whenever a browser loads a page, it queries the blacklist
to determine whether the currently visited URL is on this list. If so, appropriate
countermeasures can be taken. Otherwise, the page is considered legitimate. The
blacklist can be stored locally at the client or hosted at a central server.

Obviously, an important factor for the effectiveness of a blacklist is its cov-
erage. The coverage indicates how many phishing pages on the Internet are
included in the list. Another factor is the quality of the list. The quality indi-
cates how many non-phishing sites are incorrectly included into the list. For each
incorrect entry, the user experiences a false warning when she visits a legitimate
site, undermining her trust in the usefulness and correctness of the solution.
Finally, the last factor that determines the effectiveness of a blacklist-based so-
lution is the time it takes until a phishing site is included. This is because many
phishing pages are short-lived and most of the damage is done in the time span

between going online and vanishing. Even when a blacklist contains many en-
tries, it is not effective when it takes too long until new information is included
or reaches the clients.

For our study, we attempted to measure the effectiveness of popular black-
lists. In particular, we studied the blacklists maintained by Microsoft and Google.
We believe that these blacklists are the ones that are most wide-spread, as they
are used by Internet Explorer and Mozilla Firefox, respectively.

Page analysis: Page analysis techniques examine properties of the web page and
the URL to distinguish between phishing and legitimate sites. Page properties
are typically derived from the page’s HTML source. Examples of properties are
the number of password fields, the number of links, or the number of unencrypted
password fields (these are properties used by SpoofGuard [3]).

The effectiveness of page analysis approaches to identify phishing pages fun-
damentally depends on whether page properties exist that allow to distinguish
between phishing and legitimate sites. Thus, for our study, we aimed to deter-
mine whether these properties exist, and if so, why they might be reasonable
candidates to detect phishing pages.

In a first step, we defined a large number of page properties that can be
extracted from the page’s HTML code and the URL of the site. Then, we an-
alyzed a set of phishing and legitimate pages, assigning concrete values to the
properties for each page. Finally, using the collected data as training input, we
applied machine-learning techniques to create a web page classifier. The resulting
classifier is able to distinguish well between phishing and legitimate classifiers,
with a very low false positive rate. This indicates that the aforementioned page
properties that allow one to identify malicious pages do in deed exist, at least
for current phishing pages.

It seems that Microsoft has drawn a similar conclusion, as the new Internet
Explorer browser also features a phishing page detection component based on
page properties. This component is invoked as a second line of defense when
a blacklist query returns no positive result for a visited URL. As part of our
study, we attempted to determine the features that are most relevant to the IE
for identifying phishing sites. We observed that the IE model looks different than
the one we have built, and also detects less phishing pages.

4 Experimental Setup

In this section, we first discuss the anti-phishing solutions that we chose to
examine. Then, we describe the test data that was collected to conduct our
experiments.

4.1 Anti-phishing Solutions

In the previous section, we outlined the scope of our study. In particular, we ex-
plained our focus on solutions that analyze web pages for indications of phishing,

namely blacklist-based and page analysis techniques. To evaluate the effective-
ness of these approaches, it is desirable to select solutions that are in wide-spread
use. This is important so that the results of the study are relevant. Also, a wide-
spread solution has a higher likelihood of being well-supported and maintained,
thus making the result of the study meaningful. Consider a study that evaluates
the effectiveness of a blacklist that is not updated. While this study will probably
conclude that blacklists are very ineffective, these results are not very insightful.

For this study, we decided to analyze the effectiveness of the anti-phishing
solutions used by the Microsoft Internet Explorer 7 and Mozilla Firefox 2. The
reasons for this choice are the following: First, these two applications are the
most-used web browsers on the Internet. Second, both browsers recently intro-
duced anti-phishing mechanisms, and one can assume that these mechanisms
will be the most widely deployed anti-phishing solutions in the near future. Note
that we did not include the Opera browser in our study because the company
announced a phishing filter only shortly after we started our experiments.

Internet Explorer 7: Microsoft recently introduced the version 7 of its popular
Internet Explorer (IE) browser, which was automatically deployed to millions of
computers around the world via Microsoft’s Windows update web site. One of
the most important, new features of this browser is its anti-phishing support.
To this end, the IE 7 uses both an online database of reported phishing sites
as well as heuristics that analyze web pages to determine the potential risk of
a web site [27, 15]. This makes the Internet Explorer an optimal selection for
our study, as it uses both a blacklist and page analysis approaches to identify
phishing attempts.

For the user, the anti-phishing support has the following visible effects: If a
site is a reported phishing site, the address bar of the browser turns red and the
web site turns into a full page warning about the potential dangers of the site.
The user can then choose to either proceed to the site or close the page. If the
site is not found in the blacklist of reported scam pages, but the page heuristics
detect a possible phishing attempt, the address bar turns yellow and a warning
symbol appears at the bottom of the screen.

Mozilla Firefox: Mozilla Firefox is considered the only serious competitor to the
Microsoft IE, which currently dominates the browser market. Since version 2.0,
Firefox includes anti-phishing support. The browser can connect to any available
blacklist provider, using a documented, open protocol. Currently, however, only
the Google blacklist servers1 are pre-configured. The anti-phishing approach of
Firefox is solely based on blacklists and does not use any form of page analysis to
warn the user of potential scams. By default, Firefox uses regularly downloaded
lists and does not perform blacklist lookups with each web connection. The user,
however, can also choose to use live blacklists. When a visited URL is on the
blacklist, Firefox turns the web page into a black-and-white version and displays
a warning message.

1 Google’s blacklist is also used by the Google safe browsing toolbar [9].

4.2 Test Data

For our study, a large number of phishing pages were necessary. We chose
phishtank.com as a source of phishing URLs. The information from this site is
freely available and the amount of reported phishing sites is very large (approxi-
mately five hundred new phishing reports every day). There are other providers
of blacklist data, but their feeds are typically only available for a fee, and their
reports tend to focus on particular phishing incidents [4] (for example, a large
scale phishing attack towards a particular institution, with multiple site mirrors
and copies of spoofed emails), whereas the phishtank datasets focus on the URL
itself, thereby making it more appropriate to our goals. The free availability of
this information is also a very important aspect to our research, as phishtank
is neither affiliated with Microsoft nor with Mozilla, making the results more
objective. The URLs were extracted from a XML feed [20] of verified and (then)
online phishing sites. In addition to saving the URLs we made local copies of
each site. This was important, as most phishing sites are only online for a short
period of time and the page source was needed later for evaluating the effective-
ness of page analysis techniques. Note that even when attempting to download
phishing sites immediately, a significant fraction of these sites was already down
(and thus, no longer available for further analysis).

Table 1. (a) Domains that host phishing sites. (b) Popular phishing targets.

(a)

No domain (numerical) 3,864

.com 1,286

.biz 1,164

.net 469

.info 432

.ws 309

.jp 307

.bz 256

.nz 228

.org 156

.de 111

.ru 106

.us 105

(b)

paypal 1,301

53.com 940

ebay 807

bankofamerica 581

barclays 514

volksbank 471

sparkasse 273

openplan 182

Total 5,069

Note that phishtank is a community-driven site that lives from submissions
made by its users. Hence, this approach has the disadvantage that some reported
sites may not be phishing sites. Phishtank uses a system based on verification by
other users, who can vote whether a page is a phishing page or not. These votes
are weighted by the experience and the rank the user has within the community.
Nevertheless, it is possible that even a page that is verified by phishtank users

to be malicious is in fact legitimate. Therefore, we cannot completely rule out
the possibility that some samples are false positives. Also, note that we were not
able to investigate how often phishes reported by Google and Microsoft appeared
on phishtank. This is because we do not have access to the full blacklist used at
Microsoft (which is queried via SOAP requests) and because we believe that the
Google blacklist that is available online is not complete (i.e., we suspect that the
Google blacklist does not include IPs that have been taken down or that are not
relevant anymore).

We started the collection of phishing pages on 15. December 2006, with the
goal of gathering 10,000 URLs. This goal was reached after about three weeks,
on 4. January 2007. During this time a webcrawler periodically checked the
collected URLs and when possible downloaded the sites to our local repository.
If the download failed the crawler checked the site again on its next run and
continued doing so for 48 hours after the site was first added to our database.
For the 10,000 URLs that we collected, we were only able to download the page
sources of 4,633 sites. This clearly underlines the short time span that many
phishing pages are online. In Table 1(a), the leading top level domain names of
the phishing sites are listed. Note that the largest fraction of pages is not hosted
under any domain, but uses only numerical IP addresses. Among the remaining
sites, a large variety of domains can be observed.

We also analyzed the sites that were spoofed most often by checking for
hostnames of legitimate sites in the phishing sites URL. This is also a property
we checked for in the page analysis (see section 6.1). The results are shown in
Table 1(b). Not surprisingly, both paypal and ebay were among the top three.
Most other frequently targeted victims are online portals of banks. The eight
most targeted victims alone account for more than 50% of the phishing URLs
that we observed. Further analysis of current phishing targets based on Google’s
blacklist can be found at [13].

5 Study of Blacklist Effectiveness

To study the effectiveness of the blacklists provided by Microsoft (used by the In-
ternet Explorer) and Google (used by Firefox), we periodically checked whether
our most recently collected URLs from phishtank.com were already blacklisted.
Depending on the initial response, we either saved the positive answer (i.e., the
site is blacklisted) and stopped to check the URL, or we continued to send re-
quests with not-yet blacklisted URLs. In the latter case, we stopped after the
first positive response and saved the received data together with a timestamp.

Automated analysis: Because of the large amount of data that needed to be
processed, an automated solution to check URLs was necessary. Hence, we had
to exchange data with the two blacklist servers directly, without going through
the browser. This task was quite easy for the Google blacklist server because the
blacklist protocol and the specifications of the request and response formats are
public [25, 21].

Of course, the situation is different for Microsoft’s blacklist server, for which
no public protocol information is available. The first problem that we faced was
that the information between the IE and Microsoft is exchanged over an en-
crypted SSL connection. To discover more details about the protocol, we first
set up an Apache SSL server. Then, we created a self-signed certificate and
stored this certificate in our Internet Explorer. In addition, we added an en-
try for Microsoft’s blacklist server urs.microsoft.com to the hosts file of the
machine that the Internet Explorer was running on. The idea was to let the
Microsoft blacklist server URL point to our SSL server. As a result, the browser
contacted our server for each blacklist request. At this point, we were able to
decrypt the messages that were arriving at our server, and we discovered that
the communication was implemented via SOAP messages. We could then for-
ward these messages to the real Microsoft server, and received responses that we
could further analyze.

Analyzing the blacklist protocol, we observed that the URL of each visited
page is stripped from any GET data at the end of the URL and then sent to the
server for checking. This is different from the Google protocol, which always in-
cludes the complete URL. On sites that include iframes, a single request was sent
for each iframe. This can lead to performance problems and was subsequently
changed by Microsoft [29]. That is, before the change was introduced, an HTML
page with an embedded iframe that linked to a known phishing site was reported
as being a phishing site itself. After the change, we observed that the browser
ignored iframe links. Hence, if we created a “phishing” page that used iframes
and linked to a known phishing site, our phishing page would not be detected.
During our experiments, we also noticed that the request and response pairs to
the blacklist server often included lookup strings and responses for domains such
as microsoft.com. Unfortunately, we were not able to determine the reason for
these lookups. However, we could confirm that the browser version and the IP
address of the computer that the browser is running on is sent to the Microsoft
servers with each request (which is indicated in the privacy statement in [14]).

Analysis results: When checking the results of our test run, we recognized that
for the 10,000 different URLs that we sent to both servers, only Google returned
appropriate answers for all of them. However, we received only 6,131 responses
from the Microsoft server. After further analysis of the data, we had to draw
the conclusion that the Microsoft server was using some sort of rate limiting and
locked us out because of too many requests. As a result, we unfortunately have
less comprehensive data from the Microsoft blacklist. Nevertheless, we believe
that we still have sufficient data to provide meaningful statistics for the Microsoft
blacklist.

The results of the experiment are shown in Table 2. Initially, when we first
requested the status for a URL, Google had 6,414 URLs on its blacklist. During
the remaining time, 108 additional URLs were added to the blacklist. Thus,
Google had blacklisted a total of 6,522 URLs (out of the 10,000 analyzed) at the
end of our experiment. Microsoft sent a positive result for 3,095 URLs initially,
and 331 later, which yields a total of 3,426 blacklisted pages. Because of the

different absolute numbers of checked URLs, the table also shows the relative
values. Given our results, we observe that Google’s blacklist appears to have
more coverage, although the fraction of malicious pages that are detected are
not too encouraging in both cases.

Google Microsoft

Sites 10,000 (100.00%) 6,131 (100.00%)

BL initially 6,414 (64.14%) 3,095 (50.48%)
BL delayed 128 (1.28%) 331 (5.40%)

BL total 6,522 (65.22%) 3,426 (55.88%)
Table 2. Blacklist responses for phishing URLs.

One problem with the results above is that they do not differentiate between
phishing sites that are online (and thus, present a danger for users) and those
that are offline. Many phishing sites have a very short lifetime, and as described
in Section 4.2, we were only able to download the source for 4,633 of the 10,000
URLs we collected. Of course, maintainers of blacklists cannot include a URL
when they cannot check the page that the URL is referring to. Thus, it is fairer to
check the blacklist responses only for those pages that could be accessed. To this
end, for the next experiment, we only considered those URLs for which both the
Microsoft server and the Google server returned a response, and which could be
successfully downloaded. For this, the data set contained a total of 3,592 URLs.
The results are shown in Table 3. Interestingly, the hit rate is significantly higher
in this case, suggesting that there are probably many URLs reported that are
never considered for blacklisting because they are offline. Also, one can be seen
that the gap between Google’s blacklist and the one by Microsoft has increased,
showing that Google delivers significantly better results.

Google Microsoft

Sites 3,595 (100.00%) 3,592 (100.00%)

BL initially 3,157 (87.89%) 2,139 (59.55%)
BL delayed 84 (2.34%) 274 (7.63%)

BL total 3,241 (90.23%) 2,413 (67.18%)
Table 3. Blacklist responses for live phishing sites.

For the next experiment, we analyzed the response times for URLs that were
not initially blacklisted, but were entered into the list after some delay. More
precisely, we considered all URLs that have not initially been blacklisted by a
server, and measured the time until we first received a positive blacklist response.
The fasted addition to the Microsoft blacklist occurred after 9:07 minutes, while

it took 9 days and almost 6 hours for the slowest. Google’s fastest addition took
19:56 minutes, the slowest 11 days and 20 hours. On average, it took Microsoft
6.4 hours to add an initially not blacklisted entry (with a standard deviation of
6.2 hours). For Google, it took somewhat longer (on average 9.3 hours, with a
standard deviation of 7.2 hours). Note that due to our test setup, we are not able
to precisely measure the shortest listing times. This is because we do not con-
tinuously check URLs, but perform lookups periodically every 20 minutes. The
shortest amount of time that passed between receiving the URL from phishtank
and checking it for the first time was 7:33 minutes (for both servers). The longest
period until checking Google’s blacklist were 1:43 hours, and 2:10 for Microsoft’s
(due to unexpected problems with our scripts). In general, the results show that
adding new entries to the blacklist often takes a considerable amount of time.
However, only few entries were added overall, and the responses received from a
server for a URL rarely changed over time.

Discussion: Looking at our results for two widely-used blacklists, we can con-
clude that this approach is quite successful in protecting users, especially when
considering only URLs that refer to sites that are online. Especially Google,
which has correctly recognized almost 90% of the malicious URLs at the time
of the initial check, appears to be an important and powerful component in the
fight against phishing.

Finally, it is worth pointing out that blacklist approaches may sometimes
be defeated by simple obfuscation tricks, as reported in [1]. The basic idea of
this attack is to replace single slashes with double slashes in phishing URLs,
thereby defeating a simple blacklist string comparison. Both Firefox and Internet
Explorer 7 were vulnerable to this kind of evasion.

6 Study of Page Analysis Effectiveness

To study the effectiveness of page analysis techniques, we first wish to answer
the more basic question of whether page properties actually exist that allow one
to distinguish between malicious (phishing) pages and legitimate (benign) ones.
To answer this basic question, we define a number of properties that can be
extracted from the source and the URL of web pages (described in Section 6.1).
Once we define the page properties that we are interested in, we extract them
from a set of phishing and normal (legitimate) pages. Based on the extracted
properties, we use machine learning techniques to attempt to build a model to
distinguish between malicious and legitimate pages. When such a model can
be built, this implies that the properties must reflect some difference between
phishing pages and normal ones. However, when such a classification model
cannot be built, we have to conclude that the properties that we have defined
do not allow to distinguish between phishing and legitimate pages. Our efforts
of classifying web pages are discussed in Section 6.2. Finally, in Section 6.3, we
use our properties to analyze the effectiveness of the page analysis heuristics
implemented by Microsoft Internet Explorer 7.

6.1 Page Properties

As mentioned previously, we need to define appropriate properties to characterize
a web page before it can be analyzed for indications that might reveal it as a
phishing site. Not all of these properties have the same significance towards
the probability of being a phishing site, but those that do not matter are then
considered irrelevant by the data mining tool and therefore not included in the
final decision tree. The following is the list of 18 properties that we consider. Our
features are mostly extracted from the HTML source of a page. Two features
are derived from the page’s URL.

– Forms: Phishing pages aim to trick users into providing sensitive informa-
tion. This information is typically entered into web forms. Thus, the number

of forms (which is counted by this property) might provide an indicator to
distinguish between phishing and legitimate pages, because some phishing
sites ask the user to enter more than just his username and password (TAN
numbers in banking applications and similar).

– Input fields: Because of the importance and prevalence of web forms on
phishing pages, we aimed to define additional properties that characterize
their structure in more detail. We specified properties that count the number
of input fields, text fields, password fields, hidden fields, and other fields. The
category other fields summarizes all input elements that are not member
of any of the four more specific classes. Examples for other fields are radio
buttons or check boxes.

– Links: Another important, general characteristic of every web page is its
link structure. This not only takes into account links to other web pages, but
also includes links to embedded images. Interestingly, many phishing pages
contain links to the site they spoof, often to include original page elements
from the victim page. To recognize such pages, we include properties that
count the number of internal links to resources located in the page’s domain
as well as external links to resources stored on other sites. These links are
extracted from a page by looking for <a> tags in the HTML source. By
scanning for tags, we extract links to internal images and external

images. In addition, there is a category called other links, which counts the
number of links included by other HTML tags (such as links to style sheets
or JavaScript code, using the <link> tag). Furthermore, we explicitly count
the number of (internal and external) links over a secure connection (i.e.,
by specifying an https target), using the secure links property. The same
is done for images (secure images). Finally, to underline the importance of
external links for finding phishing pages, we also define the category external

references, which holds the sum of the number of external links and external

images.
– Whitelist references: As mentioned previously, phishing pages often con-

tain references to resources on their victims’ sites. This fact is partly captured
by the properties that count the number of external references. However, we
can go one step further and analyze all external references for the presence

of links that are particularly suspicious. An external reference is suspicious
when it points to a resource on a site that is a frequent target of phish-
ing. To find such links, we check whether any of the links on a page refer
to a resource on a trusted site. Trusted sites are those that appear on a
whitelist. More precisely, we used a whitelist compiled by Google [10] that
at the time of writing (February 2007) contained 2,431 entries that were
considered trusted. This whitelist is freely available, in contrast to a similar
whitelist maintained by Microsoft, which is stored in encrypted form in the
Windows registry.

– Script tags: To distinguish between sites that make ample use of JavaScript
and plain text pages, we count the number of JavaScript tags on a page and
store it in the script tags property.

– Suspicious URL: This and the following property are derived from the
URL of the page that is analyzed, and not from the page’s source.
An important goal of phishers is to make the phishing page appear as similar
as possible to the spoofed one. Phishers often include parts of the URL they
spoof into the URL of their phishing pages (for example, as part of the
hostname, or in the path field). To capture such behavior, we search the
URL for appearances of fragments of trusted pages. More precisely, we make
use of the domains stored in Google’s whitelist, and we check whether any
of the trusted domains appear in the URL of the page that is currently
analyzed. Hence, we perform a simple string search and determine whether
any of the domains on the whitelist appear as a substring in the current URL.
For example, www.ebay.com is on Google’s whitelist. To check whether the
current URL is suspicious, we check it for the presence of the substring ebay.
Unfortunately, this approach can raise false positives, especially when trusted
domains are very short. To mitigate this problem, we decided to only check
for the appearance of domain names that have five or more characters. In
addition, we manually added a few shorter domain names (such as ebay or
dell) that are known to be frequently targeted by phishers. The remaining
whitelist then contained 1,830 domains.

– Uses SSL: Another characteristic that was analyzed for each page is whether
it is accessed over SSL (https) or not. In our preliminary studies, we observed
that not many phishing sites make use of a secure server. One explanation
could be that it is not straightforward to obtain a trustworthy certificate.
Hence, not having such a certificate causes the browser to display a warning
message, thereby alerting the user.

Of course, we are aware of the fact that our properties might not be complete.
Furthermore, determined attackers could evade defense systems based on these
properties (for example, by making use of Flash). However, the aim of our study
is to understand whether current phishing pages can be identified based on page
properties. Thus, we believe that our selection is reasonable and reflects the
structure and methods that phishers use today. Also, our property list covers
most page attributes that are checked by SpoofGuard [3], a tool that analyzes
pages for phishing indicators. One property that is used by SpoofGuard, but

that we have not included are checks for techniques that attempt to obfuscate
links. These techniques are already handled (checked) by browsers, which raise
appropriate warning (Firefox 2) or error messages (Internet Explorer 7). As a
result, they are no longer effective and, as a consequence, no longer used by
phishers.

6.2 Classification Model

Based on the properties defined in the previous section, we built a classification
model that attempts to use these properties to distinguish between malicious
and legitimate pages.

As the set of phishing sites, we used the 4,633 pages that were successfully
downloaded during our experiments (as discussed in Section 4.2) plus about
1100 pages that we collected before starting the blacklist analysis, resulting in
5751 analyzed sites. To obtain a set of legitimate pages, we had to collect a
reasonable amount of comparable benign sites. Since the targets of phishers are
mostly login pages, we used Google’s inurl: operator to search for login pages.
More precisely, we used Google to search for pages where one of the following
strings login, logon, signin, signon, login.asp, login.php and login.htm

appears in the URL. After downloading 5,124 pages, we manually removed from
our data set all pages that were the result of a 404 error (indicating the the page
was not found) as well as pages that were obviously no login pages (e.g., blog
entries that just happened to contain the string login in the URL. This left us
with 4,335 different benign web sites for further analysis.

To prepare the data for the following classification process, we extracted one
feature vector for each page in the sets of phishing and legitimate pages. Every
feature vector has one entry for each of the 18 properties that we have defined.
When analyzing the feature vectors, we observed that there were many vectors
that had identical values, especially in case of the phishing pages. This was the
result of certain, identical phishing pages that appeared under several URLs
(sometimes, an identical phishing page appeared under a few hundred different
URLs). To prevent a bias in the classification model, focusing on the properties
of certain phishing pages that appear frequently, we decided to include into the
classification process only unique feature vectors. That is, when a number of
different pages are characterized by the same feature vector, this vector is only
considered once by the classification process. As a result, we ended up with 680
feature vectors for the set of phishing pages, and 4,149 for the set of legitimate
pages.

Using the input data described above, we applied the J48 algorithm to ex-
tract a decision tree that can classify pages as legitimate or phishing. J48 is
an implementation of the classic C4.5 decision tree algorithm [22] in Weka [31],
a well-known data mining tool. We selected the C4.5 classifier for two reasons.
First, we believe that a decision tree provides intuitive insight into which features
are important in classifying a data set. Second, the C4.5 algorithm is known to
work well for a wide range of classification problems.

Without stripping down our data to unique feature vectors, Weka created
decision trees with a bias towards the properties of the most frequently appearing
sites, thus delivering different results. The root node (i.e., whitelist references)
stays the same. However, the count of external links gains far more importance,
as it is the first node of the right subtree.

The runtimes for generating a decision tree with Weka heavily depend on
the size of the input set. With our above mentioned data sets, the building of
the models took 0.54 seconds for the IE data, respectively 1.29 seconds for the
phishing/legitimate pages. The generation of the decision trees took about one
second for the Internet Explorer tree and about ten seconds for the other one.

Classified as legitimate Classified as phishing

Legitimate page 4,131 18

Phishing page 115 565
Table 4. Confusion matrix for page classifier.

Running the J48 algorithm on our input data, using a ten-fold cross valida-
tion (which is set as default in Weka), the resulting decision tree has 157 nodes,
79 of which are leaves. The classification quality (confusion matrix) is shown in
Table 4. It can be seen that the qualifier is quite successful in identifying phishing
pages (more than 80% are correctly recognized), raising only a very small num-
ber of false alerts (18 out of 4,149 pages are incorrectly classified as phishing).
This supports the hypothesis that page properties can be used to successfully
distinguish between (current instances of) malicious and legitimate pages. As a
result, page analysis techniques can in principle be effective in distinguishing be-
tween malicious and legitimate sites. The following Section 6.3 examines to what
extent the Internet Explorer heuristics are capable of exploiting these differences
to detect phishing pages.

When examining a reduced2 version of the complete decision tree in Fig-
ure 1, it can be seen that the nodes that appear close to the root of the tree
are predominantly related to a few page attributes. In particular, these are the
number of whitelist references, the number of external and internal links, and
the property that captures suspicious URLs. The fact that these page proper-
ties are close to the root indicates that they are most effective in discriminating
between phishing and legitimate sites. Indeed, when analyzing the paths that
lead to the leaves with the largest fraction of phishing pages, one can observe
that the presence of many external and few internal references is evidence of
a malicious site. This is even more so when these external references point to
sites that are common phishing victims (that is, URLs on the whitelist). Also,
a suspicious URL is a good indication of a phishing page. When looking for

2 The tree was ”compressed” by manually truncating subtrees for which there was
a significant fraction of sites in only one class (either phishing or legitimate), or a
small number of total sites.

w h i t e l i s ts u s p i c i o u sU R L i n t e r n a ll i n k s
3 2 / 3

< = 5 > 5t e x t f i e l d s
i n t e r n a ll i n k s

s u s p i c i o u sU R Lh i d d e nf i e l d s2 1 / 2 5 6 5 / 1 61 8 / 5< = 5< = 1 6 > 5> 1 6 f a l s e t r u e
1 1 / 1 7 6 2 / 8

f a l s e
< = 1 > 1

2 0 / 9 4p a s s w o r df i e l d s
2 4 0 1 / 3 25 2 3 / 5 6

< = 6 i n t e r n a ll i n k se x t e r n a lr e f e r e n c e s 1 0 1 7 / 9 53 9 / 9 8= 0 > 0< = 1 4 > 1 4 < = 4 > 4
t r u e> 6

Fig. 1. Decision tree for phishing and legitimate pages.

strong evidence of legitimate pages, one will typically find many internal links
and internal images (and the absence of a suspicious URL).

6.3 Analysis of Internet Explorer Heuristics

In the next step, we attempted to determine those features that the Internet
Explorer page analysis heuristics considers most important to identify phishing
pages. Of course, since we were only able to do black-box testing, we can only
make assumptions about the inner workings of the phishing filter and how it
determines the “phishiness” of a webpage.

We first used the Internet Explorer to classify our sets of legitimate and
phishing pages. The process of analyzing web pages was automated, due to the
large amount of data. We developed a Browser Helper Object (BHO) (i.e., IE
plug-in) that was visiting pages and reporting on the results of the page analysis
heuristics. After each page was visited, the BHO was used to delete all temporary
files (such as browser history and cookies). This was to ensure that the next
site visited would not be treated differently because of any cached information
from previous pages. In addition, we had to work around the problem that the
Internet Explorer offers no possibility to turn off the communication with the
blacklist server. Fortunately, we could reuse the server that we previously set up
to analyze the protocol between the browser and the Microsoft blacklist server.
More precisely, we intercepted all blacklist requests by the browser during this
analysis run and provided a response that indicated that the visited site was not
blacklisted, thereby forcing IE to resort to its page analysis heuristics.

Examining the results, we observed that the Internet Explorer raised no
false warnings (that is, all legitimate sites were recognized as such). This is

better than the model that we introduced in the previous section. However,
the browser was also less successful in identifying phishing pages (only 1,867
of the 4,633 original phishing pages, or slightly more than 40% were correctly
classified). This is likely the result of a design decision to suppress false alarms
as the most important goal. In any case, even a 40% classification accuracy is
valuable when considering that no false positives are raised. This is particularly
true when page analysis techniques are employed as a second line of defense with
a blacklisting approach. When only using page heuristics to detect phishing sites,
good coverage is probably only achievable when a few false positives are tolerated
(as shown in the previous sections).w h i t e l i s tw h i t e l i s t

i n t e r n a li m a g e s i n t e r n a ll i n k s p a s s w o r df i e l d s s e c u r ei m a g e s i n t e r n a li m a g e s3 2 5 / 2 4
1 9 / 7 7 / 2 6 1 1 / 0 1 2 / 2 1 3 0 / 8 1 6 / 0 6 / 6

< = 1 4> 3 > 1 1< = 1 1< = 1 0 > 1 0
> 1 4 > 0 = 0> 2 0 > 5

< = 3
Fig. 2. Decision tree for Internet Explorer.

Once the classification effectiveness of the Internet Explorer was analyzed
quantitatively, we attempted to understand which properties were most impor-
tant for the decision process. To this end, we used the Weka J48 algorithm to
build a decision tree based on the set of phishing pages only. More precisely,
as input data set, we used the 680 unique feature vectors and the labels that
IE assigns to the corresponding pages. That is, the set contained on one hand
284 feature vectors of pages that were correctly identified as malicious, and 396
feature vectors of phishing pages that were incorrectly classified as benign. The
idea was to extract a model that would indicate which properties (together with
the properties’ values) are most important for the Internet Explorer to label a
phishing site as malicious. Figure 2 shows a reduced version of the decision tree
for this experiment. Note that the number of references that are in the whitelist
plays a central role for classification. When the number of such references is less
than four, the page is almost always classified as benign. The fact that there are
nine pages with less than three whitelist references might very well be attributed
to the fact that our whitelist (which is from Google) is slightly different that the
one used by Microsoft. Other indicators are less significant, but one can see that
the number of links to pages and images also seem to be taken into account.

7 Conclusion

In this paper, we reported our findings on analyzing the effectiveness of two
popular anti-phishing solutions. We tested the anti-phishing solutions integrated
into the Firefox 2 (i.e., Google blacklists) and Microsoft’s Internet Explorer 7
over a period of three weeks. We fed these blacklists 10,000 phishing URLs
to measure their effectiveness in mitigating phishing attacks. Furthermore, by
analyzing a large number of phishing pages, we report page properties that can
be used to identify phishing pages and improve existing solutions. Our findings
show that blacklist-based solutions are actually quite effective in protecting users
against phishing attempts and that such solutions are an important and useful
component in the fight against phishing.

Acknowledgments

This work has been supported by the Austrian Science Foundation (FWF) under
grants P-18764, P-18157, and P-18368 and the Secure Business Austria Compe-
tence Center.

References

[1] Firefox 2.0.0.1 Phishing Protection Bypass. https://bugzilla.mozilla.org/

show_bug.cgi?id=367538, 2007.
[2] Anti-Phishing Working Group (APWG). APWG Homepage. http://www.

antiphishing.org/, 2007.
[3] Neil Chou, Robert Ledesma, Yuka Teraguchi, Dan Boneh, and John Mitchell.

Client-side defense against web-based identity theft. In 11th Annual Network and
Distributed System Security Symposium (NDSS ’04), San Diego, 2005.

[4] David Utter. Sites Want To Hook And Gut Phishers. http://www.

securitypronews.com/insiderreports/insider/spn-49-20061114SitesWa%

ntToHookAndGutPhishers.html, 2006.
[5] Rachna Dhamija and J. D. Tygar. The battle against phishing: Dynamic security

skins. In Proceedings of the 2005 symposium on Usable privacy and security, New
York, NY, pages 77–88. ACM Press, 2005.

[6] Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why Phishing Works. In
Proceedings of the Conference on Human Factors In Computing Systems (CHI)
2006, Montreal, Canada. ACM Press, 2006.

[7] eBay. eBay tool bar. http://pages.ebay.com/ebaytoolbar/, 2007.
[8] Gartner Press Release. Gartner Says Number of Phishing E-Mails Sent to U.S.

Adults eearly Doubles in Just Two Years . http://www.gartner.com/it/page.

jsp?id=498245, 2006.
[9] Google. Google Toolbar for Firefox. http://www.google.com/tools/firefox/

toolbar/FT3/intl/en/, 2006.
[10] Google. Google Whitelist. http://sb.google.com/safebrowsing/update?

version=goog-white-domain:1:-1, 2007.
[11] Engin Kirda and Christopher Kruegel. Protecting Users against Phishing Attacks.

The Computer Journal, 2006.

[12] McAfee. McAfee SiteAdvisor. http://www.siteadvisor.com, 2007.
[13] Michael Sutton. A Tour of the Google Blacklist. http://portal.

spidynamics.com/blogs/msutton/archive/2007/01/04/A-Tour-of-the%

-Google-Blacklist.aspx, 2007.
[14] Microsoft. ”Microsoft Internet Explorer Privacy Statement”. http://www.

microsoft.com/windows/ie/ie7/privacy/ieprivacy_7.mspx, 2006.
[15] Microsoft. Phishing Filter FAQ. https://phishingfilter.microsoft.com/faq.

aspx, 2007.
[16] Microsoft. Sender ID Home Page. http://www.microsoft.com/mscorp/safety/

technologies/senderid/default.ms%px, 2007.
[17] Mozilla. Firefox 2 Phishing Protection Effectiveness Testing. http://www.

mozilla.org/security/phishing-test.html, 2006.
[18] NetCraft. Netcraft anti-phishing tool bar. http://toolbar.netcraft.com, 2007.
[19] Paul Robichaux. Gone Phishing: Evaluating Anti-Phishing Tools for Windows.

http://www.3sharp.com/projects/antiphishing/gone-phishing.pdf, 2006.
[20] Phishtank. Phishtank feed: validated and online. http://data.phishtank.com/

data/online-valid/index.xml, 2007.
[21] Niels Provos. Phishing Protection: Server Spec: Lookup Requests. http://wiki.

mozilla.org/Phishing_Protection:_Server_Spec#Lookup_Requests, 2007.
[22] Ross Quinlan. ”C4.5: Programs for Machine Learning”. Morgan Kaufmann, 1993.
[23] Blake Ross, Collin Jackson, Nicholas Miyake, Dan Boneh, and John C. Mitchell.

A Browser Plug-In Solution to the Unique Password Problem. http://crypto.

stanford.edu/PwdHash/, 2005.
[24] Blake Ross, Collin Jackson, Nicholas Miyake, Dan Boneh, and John C. Mitchell.

Stronger Password Authentication Using Browser Extensions. In 14th Usenix
Security Symposium, 2005.

[25] Fritz Schneider, Niels Provos, Raphael Moll, Monica Chew, and Brian
Rakowski. Phishing Protection Design Documentation. http://wiki.mozilla.

org/Phishing_Protection:_Design_Documentation, 2007.
[26] SpoofGuard. Client-side defense against web-based identity theft. http://

crypto.stanford.edu/SpoofGuard/, 2005.
[27] Tariq Sharif. IE Blog: Phishing Filter. http://blogs.msdn.com/ie/archive/

2005/09/09/463204.aspx, 2005.
[28] Verisign. Anti-Phishing Solution. http://www.verisign.com/

verisign-business-solutions/anti-phishing-solut%ions/, 2005.
[29] W3C. IEBlog:IE7 Phishing Filter Performance Update is Now Available. http:

//blogs.msdn.com/ie/archive/2007/01/31/ie7-phishing-filter-perform%

ance-update-is-now-available.aspx, 2007.
[30] Liu Wenyin, Guanglin Huang, Liu Xiaoyue, Zhang Min, and Xiaotie Deng. De-

tection of phishing webpages based on visual similarity. In 14th International
Conference on World Wide Web (WWW): Special Interest Tracks and Posters,
2005.

[31] Ian H. Witten and Eibe Frank. ”Data Mining: Practical machine learning tools
and techniques”. Morgan Kaufmann, 2nd edition edition, 2005.

[32] Yahoo. Yahoo! AntiSpam Resource Center. http://antispam.yahoo.com/

domainkeys, 2007.
[33] Yue Zhang, Serge Egelman, Lorrie Cranor, and Jason Hong. Phinding Phish:

Evaluating Anti-Phishing Tools. In Network and IT Security Conference: NDSS
2007, San Diego, California, 2007.

